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Physics 7B Fall 2008: Lecture 3 Midterm 1, Prob 4

Data

A=25em? Ty =100°C T.=0°C
Lcy = 26.0cm L = 33.0cm
w w
ka = 240
m-°C Al m-°C

kc., = 400

(a) Interface temperature

The heat flows through each section must be equal to each other and to the overall heat flow through the
entire composite bar at steady state. If they aren’t equal, there would be a net heat dump or removal at
the interface, which would raise or lower the temperature there (which wouldn’t be steady state). Let the
temperature at the interface be T. Then, the equations for heat conduction become:

d d
7?||Cu = df?HAl at steady-state.
koo AT, —T)  _ kar AT - Te) O
LCu N LAl
kcu ki ( kouw  kal )
Low " La Lew  La
Finally,
kowp, 4 karp
T = o
(Fe+ 12)
Numerically,
400W/m-°C 1 o 240W/m-°C o
7 —ozem 100°C+ 755, —0°C
(400W/m-°C i 240W/m-°C)
0.26m 0.33m
| T =68°C = 3.4 x 10°K | 3)
(2 sig figs)

Grading scheme:

1pt: Showing that you know WHY the two heat flows are equal (steady state), SOMEWHERE in the
writeup.

1pt: Correct order of the 2 temperature differences

1pt: final symbolic answer

2pt: final numeric answer. Work not necessary (but useful for partial credit here).




(b) For ﬂnterface = 50°C

We can directly rearrange eq. 1 to get L ;:

k'Al (T — Tc)

L = ALV —7¢)
A ke (Th = T)

Lcw (4)

Numerically, for the interface temperature T' = 50°C"

_ 240W/m -° C (50°C —0°C)
~400W/m -° C (100°C — 50°C)

Ly 26cm = 15.6cm = 16¢cm (5)

(2 sig figs)

Grading scheme:

1pt: Correct order of the 2 temperature differences

2pt: final symbolic answer. Partial credit given depending on how much numerical work was shown.
2pt: final numeric answer. Work not necessary (but useful for partial credit here).

(c) Heat flow along the original rods

Again, we can use the original eq. 1 directly (any one of the 2 expressions is fine):

dQ dQ ke A(Ty —T)
= Fllo = =)
dt dt LCu

Numerically,

aQ,  dQ ~ (400W/m -° C)(25 x 10~*m?)(100°C — 67.9°C)

= —rllow = 036 = 123.5W ~ 0.12kW (7)
(2 sig figs)

Grading scheme:

3pt: final symbolic answer (any one expression, with proper quantities - NOT generic T’s, L’s, etc.)
Again, a LOT of explicit numeric plugging-in gave you some partial credit here.

2pt: final numeric answer. Work not necessary (but useful for partial credit here). Missing/incorrect
units are penalized.

(d) Rate of entropy production in the process

At steady state, the rod itself is merely acting as a conduit for the heat flow and absorbs no net heat. The
heat flow calculated in (c) is being lost (Qp,) by the hot reservoir (maintained at constant temperature T,)
and is gained (QC) by the cold reservoir maintained at constant temperature (7). So, Qn = —|Q| and
Q. = |Q|, where |Q] is the absolute value of the heat flow from (c).



The total rate of entropy change for the entire system is then:

S = Sh +Sr'ods JrSC

= %’: +0+ CTQZ
So,
s =10(7 - )
Numerically,

- 1 1 J/K
=0.12 x 10° - ~0.127—
() = 012> 10%]/s (273.15}( 373.15[() 0122

Grading scheme:

2pt: Saying SOMETHING about why the rods don’t contribute to the entropy production and justifying
the signs used for the heat flows.

1pt: final symbolic answer. Credit given only if symbols are defined/make sense.

2pt: final numeric answer. Work not necessary (but useful for partial credit here). Again, units are
important.

(e) Scaling questions

If all linear dimensions of the rods are increased by a factor of 2, the cross-section area would go up by a
factor of 4 and the length would go up by a factor of 2. There is an additional factor that must be considered

(this can be done in two equally correct ways):

1. If you use the heat flow equation (eq. 6) derived in part (c) to analyse this question, you have to comment
on why the interface temperature (T) doesn’t change when you change ALL the linear dimensions.
Just concluding this (by inspection) from your symbolic answer for part (a) (eq. 2) would be sufficient
(notice that if both the Cu and Al lengths change by the SAME factor there, T is unchanged).

2. An equivalent way to solve the entire problem (but NO one did it this way) was to calculate the effective
R-value of the composite rod and write the heat flow equation in terms of this effective R-value. Then
of course, you would have had to show why this effective R-value didn’t change with a scaling of all
the dimensions.

With these 3 ingredients, we see that the heat flow would INCREASE by a factor of 2 overall.

Grading scheme:

1pt: Showing that the effective R-value or the interface temperature do NOT change (read above).
1pt: Knowing that L — 2L

1pt: Seeing that A — 4A

2pt: Final conclusion - heat flow increases by factor of 2.




Common mistakes

If you have any of these, chances are that I agonized over your grade to begin with so it most likely won’t
change. Also, any time you see grades crossed out/changed on your exam, I spent a LOT of time on those,
so the chances that there was a grading mistake are pretty slim. Also, remember that where partial credit
is concerned, I judged your understanding of the problem as a whole and rewarded good explanations.

(a) No justification for equating heat flows. Symbolic work not done/no symbolic answer. Incorrect numeric
answer (bad units, wrong substitution, etc.)

(b) No symbolic answer given. Using numerical heat flow from part (a). Claiming that the total length stays
the same (no reason for this, but a lot of people did this).

(¢) Not writing symbolic answers. Forgetting to convert the area and/or length to SI units/converting
incorrectly. Not writing units on your answers (general mistake for all parts).

(d) Very few got this correct. The most common mistake was writing a strange integral and obtaining a
natural log of temperatures. This received no credit. Only a handful got full credit on this one.

(e) Only 1 person got full credit. Most common mistake was forgetting about Tinterface (described in the
solution). Second most common mistake was forgetting that area would also change. Partial credit was
given to wrong answers only if some explanation was offered.



(d) [5 points] Water vapor and CO, added to the atmosphere increase the emissivity. COq
increases the emissivity in the infrared (where the Earth’s thermal radiation peaks) according
to eCOy = A+ Bx*In(C/Co), where C' is the increased atmospheric density of COy compared
to the pre-driving density of COg called C'o. For this problem assume that A = 0.05,
B = 0.04, and C'o = 300ppmv (parts per million by volume) from pre-1960. It is 383 ppmv
now. How much has the infrared emissivity of the atmosphere increased due to the CO,
increase between 1960 and now? What would be the corresponding temperature rise for the
Earth?

€COy = A+ B*In(C/Co) = 0.05 + 0.04 x In(383/300)

Ae = 0.04 % In(383/300) = 0.00977 about 1%

The change in temperature €,7% = (e — Ae)(T + 6T)*

0T ~ 0.75C

(e) [2 points] The Greenhouse Effect is more difficult to calculate when including water
vapor because there is positive feedback. A temperature rise of the ground, and especially
of oceans and lakes causes water vapor in the atmosphere to increase. (So also is reflecting
cloud cover.) For a 1°C rise from 14°C by how much would the water vapor fraction rise?
The saturated vapor pressure of water at 14°C and 15°C are about 1.6 x 103Pa (= N/m?)
and 1.71 x 10°Pa (= N/m?) respectively and an average relative humidity for the earth is
about 50%. What would be fractional content of the atmosphere in water vapor by volume?
0.5 x 1.17 x 103/1.013 x 10° = 0.0058

16



(f) [5 points] Why does the water vapor partial pressure rise increasingly rapidly with tem-
perature? See attached figure and provide a rough physical argument/reason and an ap-
proximate formula.

Water Vapor
25000 +
& 20000
[}
E =
3
@
o 15000
o Series1
8
2 10000
I
>
Q
£ 5000
0 + T T T 1
0 20 40 60 80
Temperature (C)

Figure 3: Water Vapor Partial Pressure Versus Temperature.

Boltzmann factor e= 2/ =153843000000*EXP(-5284/(A12+273.15)) fit by making a
semilog. fm,0o = Aexp—B/T so that In(fm,0) = In(A) — B/T pick two values and solve for
In(A) and B.

17



(g) [3 points] At the same temperature, a column of dry air will be denser or heavier than
a column of air containing any water vapor. Thus, any volume of dry air will sink if placed
in a larger volume of moist air. Also, a volume of moist air will rise or be buoyant if placed
in a larger region of dry air. As the temperature rises the proportion water vapor in the air
increases, its buoyancy will become larger. This increase in buoyancy can have a signicant
atmospheric impact, giving rise to powerful, moisture rich, upward air currents when the
air temperature and sea temperature reaches 25°C or above. This phenomenon provides
a significant motivating force for cyclonic and anticyclonic weather systems (tornados and
hurricanes).

What is the difference in density at 15°C (1.71 x 103Pa) between dry and saturated air?
How about at 25°C (3170 Pa), what is the difference in density? What is the difference in
pressure in the two cases? What is the expected wind speed?

Solution: Water vapor content is at 15°C is 1.71 x 103Pa and at 25°C is (3170 Pa). One
standard atmosphere is 1.013 x 10° So the fractional differences is

f(T'=15°C) = 1.71 x 103/1.013 x 105 = 1.688 x 1072 and

f(T =25°C") = 3.17 x 103/1.013 x 10° = 3.13 x 1072,

The mean molecular weight of air is MW = 0.8 x 28 + 0.2 x 32 = 28.8 The molecular
weight of the water vapor is 18. Thus the displaced difference is 10.8 in molecular weight or
fraction = 10.8/28.8 = 0.375.

The difference in density is

Ap(T =15°C) = f(T = 15°C) x 0.375 x py = 1.688 x 1072 x 0.375 x 1kg/m?* = 0.00633

Ap(T = 25°C) = f(T = 25°C) x 0.375 x py = 3.13 x 1072 x 0.375 x 1kg/m? = 0.0117

The difference in pressure is then

AP(T =15°C) = 1710 x 0.375 Pa = 641 Pa

AP(T = 25°C) = 3170 x 0.375 Pa = 1190 Pa

Use Bernoulli equation (energy conservation changed to energy density conservation)

KE + PE = constant — KE/Volume + PE/Volume = constant

1pv? + AP + Py = Py = constant

v =+/2AP/p = /2 x 641Pa/1kg/m? = 36 m/s = 128 km/hr = 77 mi/hr

v=1/2AP/p = /2 x 1190Pa/1kg/m? = 49 m/s = 176 km/hr = 106 mi/hr
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