Practice Midterm 1 , Math 53

1. (a) Compute Vf for f(x,y) = e* visin@y),

We have f,(z,y) = (2zy 4 y cos(zy))e® v+5@) and f,(z,y) = (2 + 2 cos(zy))e” ¥+5m(#) | 5o

Vi(z,y) = (2vy +y COS(ny))@xzerSin(xy)’ (x2 +z coS(J:y))€$2y+Sin($y)>.

You can also write your answer as Vf(x,y) = e ¥ (20 + y cos(xy), 2% 4+ x cos(xy)) or
Vf(z,y) = e vHmen) 20y +ycos(zy)i + 2 + x cos(xy)j).

(b) Compute Vg for g(z,y,2) = (2% +y> + 2*) 7.

We have g, = —2z(2? +y3+ 24) 72, g, = —3y*(@®* +y* + 2*) 2 and g, = —423(2® +y* +2%) 2
Then
Vy(z,y,2) = (—2x(z® +y* + 24) 72, =3y (2® +y* + 2*) 72, 422 (2 + * + 24)72).

You can also write your answer as Vg(x, vy, 2) = (z?+y3+24)72(—2z, —3y?*, —423) or Vg(z,y,2) =
(22 4+ y® + 24)72(—2zi — 3y%j — 42°k).

2. Find the critical points of the function f(z,y) = 2* + 2y? — 42y, and classify each as a local
maximum, local minimum or saddle point.

The partial derivatives of f are: f,(z,y) = 42® — 4y, f,(x,y) = 4y — 4x. Setting both equal
to zero gives the system of equations y = #® and y = 2. This is easily solved to obtain

Critical points: (0,0), (1,1),(—-1,—1)

To classify them we use the second order test, so we need the second order partials derivatives

of i feu(z,y) = 1222, fy,(x,y) = 4and foy(z,y) = f,(z,y) = —4. Then D(z,y) = 482*—16.
Evaluating at the critical points we get:

D(0,0) = —16 < 0 thus
(0,0) is a saddle point.
D(1,1) =32 >0 and f,,(1,1) =12 > 0, thus
(1,1) is a local minimum.

Finally, D(—1,—1) =32 > 0 and f,z(—1,—1) = 12 > 0, thus

(—1,—1) is a local minimum.

3. The position vector r(t) of a particle moving in three dimensions satisfies r’ = r x a, where a
is a fixed vector. Show that either the particle is not moving or else its motion lies within a
circle. (Hint: Show |r| and r - a are constant).

We start by proving the hint. We first show that |r|? is constant (and hence |r| is constant):

dlr|*  d(r-r)
dt— dt

=2r-r'=2r-(rxa)=2(rxr)-a=0,



because r x r = 0. In the last line we use that for vectors a,b,c we have the identity

a-(bxc)=(axb)-c. Since the derivative in time of |r(¢)|* is zero, we conclude that it is
constant.

We now show that r - a is constant:

d
a(r-a):r’-a—l—r-a’:r’-a:(rxa)-a:r-(axa):O.
We have proved that both |r| and r x a are constant. We now conclude: We distinguish two

cases
Case 1: |r| = 0. In this case r(t) = (0,0,0) for all time, so the particle is not moving.

Case 2: |r| = d > 0. In this case the particle moves in a sphere of radius d and since it also
satisfies r x a = e, for some constant e, it also moves in a plane (r x a = e is the equation
of a plane with normal vector a). Then the particle moves in the intersection of the sphere
and the plane which is either a point, if the surfaces are tangent, and thus the particle is not
moving; or the intersection is a circle, and so the motion lies within a circle.

4. Find the area of the region inside the curve r = 4sin260 and outside the circle r = 2 for

s . P N | c 2 _ 1—cos2z
0 <0< 7. (Reminders: sin § = 5, sin”x = ~=*=%)

The two curves are shown in the picture below. We first find the intersections: 4sin 26 = 2

where ¢ € [0, 7]. This gives us sin 26 = % sofl= {5 orf= ?—g

Then the area of the region is
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5. Assume that the two equations f(z,y,2) = 0, g(z,y, z) = 0 together implicitly define y as a
function of x and z as a function of z. Find formulas for 3/ = % and 2’ = g—i in terms of the

partial derivatives of f and g.

Using the chain rule we differentiate the two equations f(x,y(x), z(z)) = 0 and g(z, y(z), z(z)) =
0 with respect to x to obtain:



fot foy + £/ =0and g, + g,y + 9.2’ = 0.
This is a linear system for ¢y’ and z’. Multiplying the first equation by ¢, and the second by

f. and subtracting we obtain, after some algebraic manipulation, that

r_ J29: — 92 [«
fygz - gyfz
Similarly we obtain

r fzgy - grfy
= =0
fygz _gyfz



