
Solutions

Q1: Warm-up

a)

First we determine the DTFT for each signal:
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Now, we want to take the magnitude of the DTFTs. We know the function should have zeros at values of
[−π, 0, π]. This only holds for the sin terms. Therefore, the second and third bubbles should be selected.

Q2: I’ve Seen Better Phase

a) S is causal?

True. The definition of causality states that y[n] must only depend on current or previous values of x[n]. We

have the input to system T, which is x[n]ei
2π
3 n. x[n]ei

2π
3 n is causal since it only depends on current values

of x[n]. We also know that T is causal, and cascading causal systems results in a causal system. Therefore
S is causal. A common misconception was that a causal system has y[n] = 0 or x[n] = 0 for n < 0. This is
not true. Rather, we can say that in a causal system, h[n] = 0 for n < 0.

b) S is linear?

True. x[n]ei
2π
3 n is a linear function of x[n]. This is because ei

2π
3 n is not a function of x[n]. We can always

resort to the test of replacing x[n] with α1x1[n] + α2x2[n]. We get

y[n] = α1x1[n]ei
2π
3 n + α2x2[n]ei

2π
3 n

= α1y1[n] + α2y2[n],

thus the first part is linear. We also know that T is linear and cascading linear systems is linear.

c) S is time invariant?

False. x[n]ei
2π
3 n will behave differently at different times n. We can also use the test.

u[n] = x[n]ei
2π
3 n

u[n−K] = x[n−K]ei
2π
3 (n−K)
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v[n] = x[n−K]

w[n] = v[n]ei
2π
3 n

w[n] 6= u[n−K]

The system S can be time invariant if T undos the multiplication with ei
2π
3 n. However, this would require T

to be time variant, which is not the case. A common misconception was that a change in frequency implies
TV. However, that is not always true. Here’s a counter example: y(t) = (x(t))2. Another misconception is
that having a phase shift implies TV. A counter example for this is y(t) = x(t− τ).

Q3: Proctor and Upsample

We have

Yd(ω) =

∞∑
n=−∞

y[n]e−iωn.

Since y[n] is only nonzero for n = 4m with integer m,

Yd(ω) =

∞∑
m=−∞

y[4m]e−iω4m =

∞∑
m=−∞

x[m]e−i4ωm = Xd(4ω).
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Q4: Bob the Filter

a) The block diagram is shown below, where D represents a unit delay.
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b) Taking the DTFT of both sides of the equation, we get:

y[n]− y[n− 1] +
1

4
y[n− 2] = x[n]

Yd(ω)− Yd(ω)e−iω +
1

4
Yd(ω)e−iω2 = Xd(ω)

And we can solve for the frequency response as:

Hd(ω) =
Yd(ω)

Xd(ω)

=
1

1− e−iω + 1
4e
−i2ω

=
1

(1− 1
2e
−iω)(1− 1

2e
−iω)

So the magnitude response is given by:

|Hd(ω)| = 1

|1− 1
2e
−iω|2

Since this filter emphasizes low frequencies and de-emphasizes high frequencies, it is a low pass filter.
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c) Note that x[n] can be represented as x[n] = eiπn, a sinusoid of frequency π. We compute the frequency
response at this frequency to be:

Hd(π) =
1

(1 + 1
2 )(1 + 1

2 )

=
4

9

So y[n] will simply be:

y[n] = Hd(π)eiπn =
4

9
(−1)n

Q5: The Matrix: Evaluations

The DFT equations are:

Analysis: X[k] =
1

p

p−1∑
n=0

x(n)e−ikω0n Synthesis: x(n) =

p−1∑
k=0

X[k]eikω0n, ω0 =
2π

p

The 4-point DFT of x = {a, b, c, d} is X = {A,B,C,D}.

a)

Write down the 4-point IDFT matrix that maps X to x. Use complex notation in rectangular coordinates
of the form (r + is) for the entries.

Answer: If X = Wx, then x = W−1X, where W−1 = 1
NW

H (This is a special case for symmetric
matrices like DFT matrices.)

b)

Suppose A = 0, B = 0,C = 1,D = 0. What are a, b, c, and d?
x(0)
x(1)
x(2)
x(3)

 =


a
b
c
d

 = 1
4


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i



X[0]
X[1]
X[2]
X[3]

 = 1
4


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




0
0
1
0

 =


0.25
−0.25
0.25
−0.25


Q6: They Only Differ by a T

a)

We know:

Xd(ω) =

7∑
n=0

x[n]e−iωn

Y [k] = Xd(ω)|ω= 2π
8 k

=

7∑
n=0

x[n]e−i
2π
8 kn
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By definition of the DFT, we also know that:

Y [k] =

7∑
n=0

y[n]e−i
2π
8 kn =

7∑
n=0

x[n]e−i
2π
8 kn

Since the DFT and IDFT are invertible, we know they are one-to-one. Therefore, y[n] = x[n].

b)

Xd(ω) =

7∑
n=0

x[n]e−iωn

Z[k] = Xd(ω)|ω= 2π
16 k

=

7∑
n=0

x[n]e−i
2π
16 kn

By definition of DFT:

Z[k] =

15∑
n=0

z[n]e−i
2π
16 kn =

7∑
n=0

x[n]e−i
2π
16 kn

In order for these two summations to be equal, we know z[n] = 0, n ∈ {8, 9, ..., 15}. Therefore,

z[n] =

{
x[n] if n ∈ {0, ..., 7}
0 if n ∈ {8, ..., 15}

Q7: Periodicity Makes the World Go Round

Using the definition of convolution:

y[n] =

∞∑
k=−∞

h[k]x[n− k]

We also know that h[n] = 0∀n < 0, n > 2, which gives us the following:

y[n] =

2∑
k=0

h[k]x[n− k]

Now expand this and plug in for n:

y[0] =

2∑
k=0

h[k]x[0− k] = h[0]x[0] + h[1]x[−1] + h[2]x[−2] = 1× 1 + 2×−1 + 3× 1 = 2

y[1] =

2∑
k=0

h[k]x[1− k] = h[0]x[1] + h[1]x[0] + h[2]x[−1] = 1×−1 + 2× 1 + 3×−1 = −2

y[2] =

2∑
k=0

h[k]x[2− k] = h[0]x[2] + h[1]x[1] + h[2]x[0] = 1× 1 + 2×−1 + 3× 1 = 2

This pattern will continue so it follows that y[n] = {2,−2} with period p = 2.
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Q8: Extreme Makover: Comb Edition

a)

The frequency response of H3 is the product of H1 and H2:

H3(ω) = H1(ω)H2(ω) =
1

1− α1e−i3ω
× 1

1− α2e−i6ω

The salient features of the filter occur at multiples of π
3 , so we will observe H3 at those points to determine

what the values of α1 and α2 are:

H3(0) =
1

1− α1
× 1

1− α2

H3(
π

3
) =

1

1 + α1
× 1

1− α2

1. α1 = 0.1, α2 = 0.1
H3(0) = 1

1−0.1 ×
1

1−0.1 ≈ 1.2

H3(π3 ) = 1
1+0.1 ×

1
1−0.1 ≈ 1

This is plot (a).

2. α1 = 0.1, α2 = 0.9
H3(0) = 1

1−0.1 ×
1

1−0.9 ≈ 11

H3(π3 ) = 1
1+0.1 ×

1
1−0.9 ≈ 9

This is plot (c).

3. α1 = 0.9, α2 = 0.1
H3(0) = 1

1−0.9 ×
1

1−0.1 ≈ 11

H3(π3 ) = 1
1+0.9 ×

1
1−0.1 ≈ 0.5

This is plot (b).

4. α1 = 0.9, α2 = 0.9
H3(0) = 1

1−0.9 ×
1

1−0.9 ≈ 100

H3(π3 ) = 1
1+0.9 ×

1
1−0.9 ≈ 5

This is plot (d).

So,
a) I
b) III
c) II
d) IV

b)

Recall that Ωd = 2πfc
fs

where fc is the frequency in CT, fs is the sampling rate, and Ωd is the corresponding
DT frequency. Since the comb filter is a DT filter, we need to find the sampled signal before determining
the output of the filter.

x[n] = cos(
π

3
n) + e−i

5π
6 n + sin(

2π

3
n) + 16e−i0n

Now the output of the filter follows from the graph of the frequency response (the filter is symmetric so cos
and sin can be scaled by the frequency response as well, but this is not true in general!!):

y[n] = H3(
π

3
)cos(

π

3
n) +H3(

−5π

6
)e−i

5π
6 n +H3(

2π

3
)sin(

2π

3
n) +H3(0)16e−i0n
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≈ 5cos(
π

3
n) + 100sin(

2π

3
n) + 1600 ≈ 100sin(

2π

3
n) + 1600

We also accepted y(t) after ”unsampling” y[n] back to CT:

y(t) ≈ 5cos(8000πt) + 100sin(16000πt) + 1600 ≈ 100sin(16000πt) + 1600

Note that H3(ω) has a phase, but we chose coefficients carefully so that either the magnitude or phase at
these points is 0.
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