
CS 61A Structure and Interpretation of Computer Programs
Fall 2013 Midterm 1

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” × 11”
crib sheet of your own creation and the official 61A midterm 1 study guide attached to the back of this exam.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)

For staff use only

Q. 1 Q. 2 Q. 3 Q. 4 Total

/12 /16 /14 /8 /50

2

1. (12 points) Dog Goes Woof

For each of the following call expressions, write the value to which it evaluates and what would be output by
the interactive Python interpreter. The first two rows have been provided as examples.

• In the Evaluates to column, write the value to which the expression evaluates. If evaluation causes an
error, write Error.

• In the column labeled Interactive Output, write all output that would be displayed during an interactive
session, after entering each call expression. This output may have multiple lines. Whenever the interpreter
would report an error, write Error. You should include any lines displayed before an error. Reminder :
the interactive interpreter displays the value of a successfully evaluated expression, unless it is None.

Assume that you have started Python 3 and executed the following statements:

from operator import add , mul

def square(x):

return mul(x, x)

def dog(bird):

def cow(tweet , moo):

woof = bird(tweet)

print(moo)

return woof

return cow

cat = dog(square)

Expression Evaluates to Interactive Output
square(5) 25 25
1/0 Error Error

add(square(2), mul(3, 4))

print(print(print(2)))

cat(3, 4)

square(cat(5))

cat(square(2), print(5))

cat(print(square(3)), 8)

Login: 3

2. (16 points) Frog Goes Croak

(a) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global frame

mouse

frog

func mouse(n)

func frog(croak)

Return Value

Return Value

Return Value

Return Value

def mouse(n):
 if n >= 10:
 squeak = n // 100
 n = frog(squeak) + n % 10
 return n

def frog(croak):
 if croak == 0:
 return 1
 else:
 return 10 * mouse(croak+1)

mouse(357)

(b) (2 pt) ***Question***: After executing the code above, to what value will mouse(21023508479) evaluate?

4

“People have forgotten this truth,” the fox said. “But you mustn’t forget it. You become responsible forever for what
you’ve tamed.” — Antoine de Saint-Exupéry, The Little Prince

(c) (8 pt) Fill in the environment diagram that results from executing the code below until the entire program is finished,
an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global frame

prince

tame

ox

func prince(fox)

func tame(f)

Return Value

Return Value

Return Value

Return Value

3

def prince(fox):
 def fox(fox):
 return lambda x: fox
 return fox(5)

def tame(f):
 return f(ox)(4)

ox = 3
tame(prince)

Login: 5

3. (14 points) Elephant Goes Toot

(a) (4 pt) Fill in the blanks of the implementation of differs_by_one_digit below, a function that takes two
positive integers m and n and returns whether m and n differ in exactly one digit. If m and n have different
numbers of digits, then differs_by_one_digit(m, n) always returns False.

def differs_by_one_digit(m, n):

""" Return True if and only if m and n have the same number of digits ,

and they differ by exactly one digit.

You may assume that m and n are positive integers.

>>> differs_by_one_digit (3467, 3427) # 3rd digit differs

True

>>> differs_by_one_digit (2013, 2011) # Last digit differs

True

>>> differs_by_one_digit (1013, 2013) # First digit differs

True

>>> differs_by_one_digit (5, 2) # Only digit differs

True

>>> differs_by_one_digit (2013, 2013) # No digit differs

False

>>> differs_by_one_digit (1013, 2011) # Both first and last differ

False

>>> differs_by_one_digit (3102, 2013) # All digits differ

False

>>> differs_by_one_digit (1, 21) # Different number of digits

False

>>> differs_by_one_digit (1, 12) # Different number of digits

False

>>> differs_by_one_digit (21, 1) # Different number of digits

False

>>> differs_by_one_digit (12, 1) # Different number of digits

False

"""

diffs = 0

while m > 0:

if __:

return False

m, t = m // 10, m % 10

n, v = n // 10, n % 10

if __:

diffs = ___

return __

6

(b) (3 pt) Using only the numeral 5, the numeral 2, the name mul, commas, and parentheses, complete the final
expression below so that it evaluates to 15.

from operator import add , mul

def f(x):

def g(y):

def h(f):

return f(add(1, x), y)

return h

return g

f(__)

(c) (3 pt) Fill in the blanks below with expressions so that the final expression evaluates to the string "onetwothree".
Reminder : The expression ’a’ + ’bc’ evaluates to ’abc’.

ring = lambda ________: ding(__________________________)(_____________________)

ring(lambda x: lambda y: x() + "two" + y)

(d) (4 pt) The CS61A staff has developed a formula for determining what a fox might say. Given three strings,
a start, a middle, and an end, a fox will say the start string, followed by the middle string repeated a number
of times, followed by the end string. These parts are all separated by single hyphens.

Complete the definition of fox_says, which takes the three string parts of the fox’s statement (start, middle,
and end) and a positive integer num indicating how many times to repeat middle. It returns a string.

You cannot use any for or while statements. Use recursion in repeat. Moreover, you cannot use string
operations other than the + operator to concatenate strings together.

def fox_says(start , middle , end , num):

"""

>>> fox_says(’wa’, ’pa’, ’pow ’, 3)

’wa -pa -pa -pa -pow’

>>> fox_says(’fraka ’, ’kaka ’, ’kow ’, 4)

’fraka -kaka -kaka -kaka -kaka -kow’

"""

def repeat(k):

return start + ’-’ + repeat(num) + ’-’ + end

Login: 7

4. (8 points) What Does Newton Say?

Your partner has implemented a function derivative that takes a single-argument differentiable real-valued
function f and a real number x and returns the derivative of f evaluated at x. You don’t know how she did it,
but you find that it works perfectly.

def derivative(f, x):

""" Return f’(x), the derivative of f at x.

>>> derivative(lambda x: x*x, 4) # derivative of x*x is 2*x

8

>>> derivative(lambda x: x*x*x, 4) # derivative of x*x*x is 3*x*x

48

"""

Mystery implementation!

(a) (4 pt) Complete a new implementation of find zero below so that it takes only one argument, a differentiable
function f. You may use derivative above, along with newton update and improve from your study guide.
You cannot use any assignment (=), conditional (if), for, or while statements.

def find_zero(f):

""" Return a zero of the function f.

>>> def cube_root(a):

... return find_zero(lambda x: x*x*x - a)

...

>>> cube_root (729)

9.0

"""

def near_zero(x):

return approx_eq(f(x), 0)

8

(b) (4 pt) The function equal takes two differentiable single-argument functions f and g and returns an x for
which f(x) is equal to g(x). Implement the support function equal update that completes the implemen-
tation. You may use derivative above, along with newton update from your study guide. You cannot use
any assignment (=), conditional (if), for, or while statements.

def equal(f, g):

""" Return an x for which f(x) == g(x).

>>> def cube(x):

... return x * x * x

...

>>> def plus_six(x):

... return x + 6

...

>>> equal(cube , plus_six)

2.0

"""

def close(x):

return approx_eq(f(x), g(x))

return improve(equal_update(f, g), close)

def equal_update(f, g):

""" Return an update function that completes the implementation of equal."""

