Midterm Exam 2 (90 minutes, 180 points)

March 12, 2013 8 Pages, 30 Questions

Student Name: Answer Key Student ID#_____

Potentially Useful Information

Ideal Gas: PV = nRT

$$N_A=6.0221\times 10^{23}~{
m particles/mol}$$

Absolute $T(K) = T(^{\circ}C) + 273.15$

 $V_m = 22.414 \text{ L mol}^{-1} \text{ at STP (1 atm, 273.15 K)}$

 $R = 0.08206 L atm mol^{-1} K^{-1}$

$$v_{rms} = \sqrt{\overline{v^2}} = \sqrt{\frac{3k_BT}{m}} = \sqrt{\frac{3RT}{M}}$$

Particle in a 1D box: $E_n = \frac{h^2 n^2}{8mL^2}$; n = 1, 2, 3, ...

Violet	Blue	Green	Yellow	Orange	Red
400		500	60	00	700
			Wavelength (nm)		

$$\lambda v = c \quad E_{photon} = hv \quad c = 2.9989 \times 10^8 \ m \ s^{-1} \quad h = 6.62608 \times 10^{-34} \ J \ s \quad p = mv \quad E_k = \frac{mv^2}{2} = \frac{p^2}{2m}$$

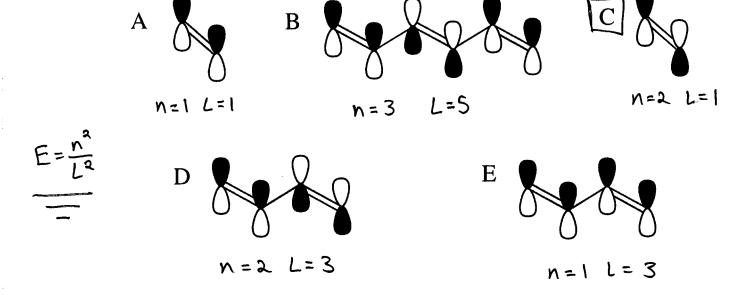
Molecular orbital diagrams:

iai orbitai aiag	i airio.		1		
 σ*	— σ*	— σ*	— σ*	 σ*	→ → σ*
— — π*	π*		— — π*	— — π*	↑ ↑
— σ	— о — л	— σ — π	— — п	— — п	₩ Т
$\uparrow \uparrow \uparrow \pi$			— σ	— σ	↑ σ
1 σ*	— σ*	 σ*	 σ*	— σ*	↑ σ*
1 σ	σ	— σ	— σ	— σ	+ σ
B_2	C ₂	N ₂	O ₂	F ₂	Ne ₂

	Na	K	Rb	Cl	Br	I
Ionization Energy (kJ/mol)	496	419	403	1251	1140	1008
Electron Affinity (kJ/mol)	53	48	47	349	325	295

Only scientific calculators may be used on this exam; graphing calculators (or any calculator with a "Solve" function the capability to store ASCII/text data, etc.) are strictly prohibited. The use of unauthorized materials will result in a grade of zero on the exam. At instructor discretion, students found cheating may also be reported to the UC Berkeley Center for Student Conduct.

Student Name		<u> </u>					
atm of Ne in the co	ontainer?	ed in a 114.9 mL contain					
A) 5.45	B) 786.28	C) 210.96	D) 20.32	E) 10.27			
Ne 209/mol ->	7.7x10 mol	moles Ne	= 2x moles Ar				
Ar 409/mol	3.85 x10-2 mol	C) 210.96 moles Ne Ptot = 3;	10+1atm 300	itm x 3(PNe) Z	20.32 atm		
		owing statements is no			0, 77(
A) At constant ten pressure is propo density	-	B) At constant density, proportional to T	numbe	onstant temperature r of moles, volume is tional to pressure	and		
	ndard pressure a s proportional to	nd temperature, the number of moles	E) None of the	above			
Consider the following reaction for questions 3 and 4:							
	Α		В				
	OH ₂ CO H	2O HCl	Cl	Cl Cl			
OH_2 H_2O			Cl				
	Pink Solution		Blue Solution				
S.	teric #6		Steric #4				
		ization around the coba					
A) $sp^6 \rightarrow sp^3$	B) $sd^6 \rightarrow sd^3$	$C)sp^3d^2 \rightarrow sp^3$	D) $sp^3d^2 \rightarrow sd^3$	E) No change			
4. What wavelength of light could be used to excite complex A from the HOMO (Highest Occupied Molecular Orbital) to the LUMO (Lowest Unoccupied Molecular Orbital)?							
A) Radio Wave	B) IR	C) Pink	D) Red	E) Blue			
(λ~1m)	A pinh sol	ution absorbs	blue light				
5. If 1 atm of CH ₄ (g) and 1 atm of O ₂ (g) (a total pressure of 2 atm) react to form CO ₂ (g) and H ₂ O (g) at constant temperature and volume what is the pressure of the product mixture?							
A) 0 atm	B) 0.5 atm	C) 1.0 atm	D) 1.5 atm	E) 2.0 atm			
1 to	1 molar	ratios and	l all gas pha	se so			
	2 at	m in -> 2	atm out		2		


6. One mole of C_{60} , buckminsterfullerene molecules decomposes to form carbon atoms. How many moles of carbon atoms are formed?

- A) 6.0×10^{23}
- B) 1.0×10^{22}
- C)60

- D) 1.0
- E) 1.7× 10⁻²

1 mole Co0 = 60 moles C,

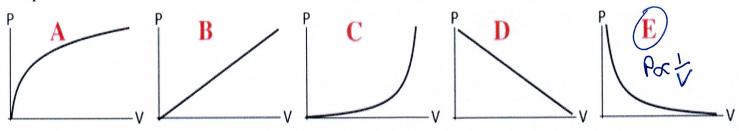
7. Assuming that delocalized π -systems can be modeled in the same way as particle-in-a-box problems, which of the following molecular orbitals (with delocalized π -systems) has the highest energy?

8. Which of the following molecules and molecular ions would experience an increase in paramagnetism through loss of an electron?

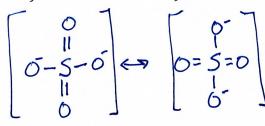
A) F₂

- B) O₂
- C) 0_2^+
- D) N₂⁺
- E) N_2^-

Use Mo diagrams


9. Considering molecular orbital theory, which of the following has the weakest bond?

A) F₂


- B) O₂
- C) O_2^+
- D) N₂⁺
- E) N_2^-

Use MD diagrams

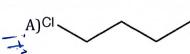
10. Which graph depicts the dependence of pressure on volume for dilute He (g) at a constant temperature?

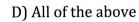
- 11. What is the bond order of the S-O bonds in SO_4^{2-} ?
- A) 0.0
- B) 0.5
- C) 1.0
- E) 2.0

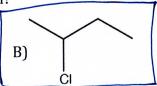
12. How many structural isomers (not counting stereoisomers) of C₄H₉Cl exist? Two structural isomers of pentane (C_5H_{12}) are shown below as an example:

VS

B) 3


D) 5


E) 6



13. Which of the following is chiral?

E) None of the above

4 groups: -H, -CI, -CHz, -CHzCHz

14. A flask of fixed volume contains oxygen atoms at 6.00 atm pressure. What is the new pressure when all the atoms react to form O₃ molecules at constant temperature?

- A) 1.0 atm
- B) 1.3 atm
- C) 1.5 atm
- (D) 2.0 atm E) 2.3 atm

directly proportional

15. What is the formal charge on the carbon in CO?

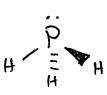
- A) -2
- C) 0

- D) + 1
- E) + 2

16. Helium gas taken from a nuclear experiment contains ³He and ⁴He. One mole of gas weighs 3.75 g and has a pressure of 1 atm inside a fixed volume. What is the partial pressure of ³He?

- C) 0.50 atm
- E) 0.0125 atm

- A) 1.25 atm B) 0.75 atm 9/mol moles 4He 3x + 4(1-x) = 3.75g moles 3x + 4 4x = 3.75g-x = -0.25

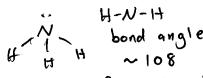

0.25 moles ³He 0.25: 0.75 mole ratio

17. Which is the proper ordering of the following elements from highest ionization energy to lowest?

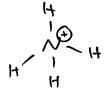
- A) Na, Mg, Si, S, Ar B) Ar, Na, Si, S, Mg Ar, S, Si, Mg, Na D) Mg, Na, Si, Ar, S E) Si, S, Ar, Na, Mg

18. Which of the following molecules has a central atom with sp³ hybridization?

- A PH₃
- B) BeF₂
- C) XeF₄
- E) SbF₆



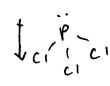
- F.-Be-F FXe F FIIS IIIF F Sb F

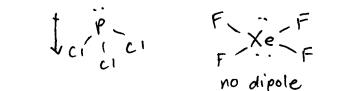

 SP SP3d2 SP3d2 SP3d2

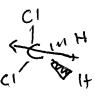
19. How does the H-N-H bond angle change when NH₃ is protonated to NH₄?

- A) Increases
- B) Decreases
- C) No change
- D) All of the above
- E) None of the above

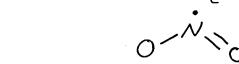
H-N-17
bond angle
H ~ 108
from lone pair/bond
regulsion

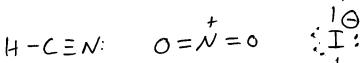



H-N-H bond angle 109.5


- 20. What is the steric number and electron pair configuration about tellurium in TeF₄?
- A) 2, linear
- B) 3, trigonal planar
- C) 4, tetrahedral
- D) 5, trigonal bipyramid
- E) 6, octahedral

- 21. Which of the following molecules does not have a dipole moment?
- A) H₂CO
- B) PCl₃
- C)XeF₄
- D) CH₂Cl₂
- E) IF₃




- 22. By how much does the oxidation number for Nitrogen change when NO_2 is oxidized to NO_3^- ?
- A) + 2

- D)-1
- E) -2

Oxidation # +4

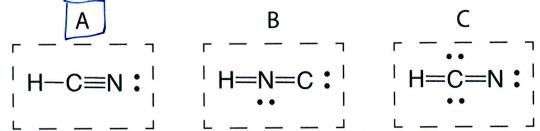
- 23. Which has a linear structure?
- A) HCN
- B) NO₂⁺
- C) ICl₂
- D) A, B, and C
- E) None

24. How much energy is required for a mole each of atomic K and Br atoms to form ionic K⁺ and Br⁻?

- A) 94 kJ
- B) 325 kJ
- C) 419 kJ
- D) 744 kJ
- E) 1188 kJ

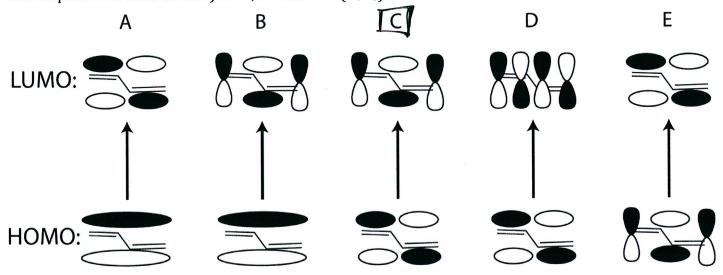
Ionogenton Energy of K: 419 KJ - Electron Affordy of Br: 325 KJ

25. Which of the following has the strongest bond?

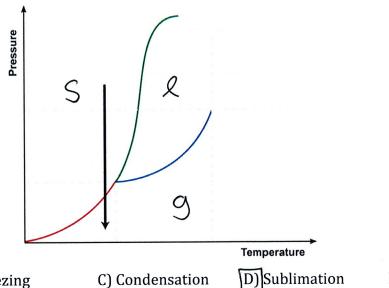

- C) O_2
- D) O_{2}^{+}
- B.O. 2.5
- E) O_2^{24}

#

8.0.3


B.O. 2 8.0.1.5

8.0. \ 26. Which of the following is the correct Lewis structure for HCN?



- 27. Which has the highest average speed?
- A) Ne at 100 K
- B) Ar at 100 K
- D) Br₂ at 212 K

28. Which of the following shows the HOMO (Highest Occupied Molecular Orbital) to LUMO (Lowest Unoccupied Molecular Orbital) for 1,3-butadiene (C₄H₆)?

29. What phase transition is depicted in the phase diagram below?

A) Melting

B) Freezing

E) Deposition

30. In order to ensure that the Scantron machine is calibrated bubble in A as your answer for 30.

