

Math 54 First Midterm Fall 2012 Instructor: D.-V. Voiculescu
This is a "closed book" exam, so you may not bring in or use notes or the textbook.
Calculators are not allowed.

Please write your name, SID and Discussion Section # on everything you hand in, including this sheet of paper on which you have to provide the answer to Problem II (the true or false questions). For Problem I you must show the method and calculations you use to get the answers (write the solutions to the questions in Problem I in your blue book). The Requirement is 20 points.

Problem I (5+3+2+4) Let A and B be the matrices:

$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & -1 & 1 \\ -1 & 1 & 0 & 1 \\ 0 & -1 & 1 & 1 \end{pmatrix}$$

- a) Compute a <u>row echelon form of B</u> by elementary row operations and write each time the elementary matrix for the row operation you carry out.
- b) Find bases of the column space Col B and of the nullspace Nul B of B.
- c) Compute det A.
- d) Compute the inverse of the matrix ${\sf A}$.

Problem II (6 pts, each question 1 pt). Check True or False.

a)	In \mathbb{R}^{n} if X, Y, Z are linearly independent vectors and Y, Z, T are linearly independent then X, Y, Z, T are linearly independent.	True	False	
b)	In a vector space, the intersection of 2 subspaces is a subspace.	$\sqrt{}$		<u></u>
c)	In a vector space, the union of 2 subspaces is a subspace.	5	· V	6
d)	The set of rational numbers Q is a subspace of R.			
e)	There exist linear maps $S: R \rightarrow R$ and $T: R \rightarrow R^2$ such that		/	
	their composition ToS: R ->R is one- to -one and onto		V	
f)	There exist linear maps S: $R^3 \rightarrow R^2$ and T: $R^2 \rightarrow R^3$ such that	/		-
	their composition SoT: R > R is one-to-one and onto.	V		

9/24/12

Elementary Matrix, E

 $\begin{array}{c|c} 1. a) B = \begin{bmatrix} 1 & 0 & -1 & 1 \\ -1 & 1 & 0 & 1 \end{bmatrix} \\ \hline 0 & -1 & 1 & 1 \end{bmatrix} \\ \hline 5/5 & \begin{bmatrix} 0 & -1 & 1 & 1 \\ 0 & -1 & 1 & 1 \end{bmatrix} \end{array}$

0 1 -1 2 0 0 0 3 0 ran echelon form

another (- [] 0 -1]

echelon { 0 0 0 1]

010 put corrat

$$\frac{3}{3} = \frac{3}{3} = \frac{3}$$

o)
$$A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$

$$det A = \begin{bmatrix} 1 & 1 & 1 & -6 & -1 & 1 & +1 & -1 & 1 \\ -1 & 1 & 1 & 0 & 1 & 1 & -1 & 1 \\ -1 & 1 & 1 & 0 & 1 & 1 & 0 & -1 \end{bmatrix}$$

$$= (2) -0 + (1)$$

$$det A = 3$$