Login: cs6lc-

CS61C Summer 2012 Midterm

Your Name:

SID:

Your TA (Circle):

Name of person to your LEFT:

Name of person to your RIGHT:

Paul Brandon

Sung Roa

This exam is worth 110 points and will count for 20% of your course grade.

The exam contains 9 questions on 13 numbered pages, including the cover page. Put all

answers on these pages; don’t hand in stray pieces of paper.

Question 0: You will receive 1 point for properly filling out this page as well your

login on every page of the exam.

Question Points (Minutes) Score

0 1(0)

1 15 (26)
2 10 (14)
3 10 (18)
4 9 (16)
5 10 (18)
6 17 (26)
7 12 (22)
8 26 (40)

Total 110 (180)

All the work is my own. | had no prior knowledge of the exam contents nor will | share the

contents with others in CS61C who have not taken it yet.

Signature:

Question 1: Potpourri — Hard to spell, nice to smell... (15 points, 26 minutes)

a) True/False:

T F We prefer two’s complement over the unsigned representation because two’s

Complement can represent more values.

T F The assembler uses symbol tables to resolve absolute addresses.

T F A program will always execute faster in a RISC architecture than a CISC architecture.
T F The greater the number of memory accesses in a program, the greater the AMAT.

T F Pseudo-instructions do not always use $at.

T F Since $s0 is a "saved register," it does not need to be saved before any function calls.

b) Fill in the function below, which returns a new copy of the argument (struct definition not shown):

struct something *cpySomething(struct something *old) {

return new;

c) Hereis whatis currently on the heap:

LA [A | A | | | ¢

| b [D

The order of allocation/frees: A allocated, B allocated, C allocated, B freed, D allocated

What allocation strategy was used?

d) What is the average CPI of the program described

in the table to the right? Which is better: halving

memory access cycles or arithmetic cycles and

why?

Instruction Category | Cycles | Frequency
Memory Access 10 0.1
Arithmetic 2 0.4
Branch 3 0.2
Comparison 1 0.3

Login: cs6lc-

e) I'm getting the message “cannot execute binary file”. In one or two sentences, explain
what the problem is and how to fix it.

f) In our 32-bit single-precision floating point representation, we decide to convert one significand bit
to an exponent bit. How many denormalized numbers do we have relative to before? (Circle one)

More Fewer

Rounded to the nearest power of 2, how many denorm numbers are there in our new format?
(Answer in IEC format)

Question 2: Flippin’ Fo’ Fun (10 points, 14 minutes)

Assume that the most significant bit (MSB) of X is a 0. We store the result of flipping X’s bits into V.
Interpreted in the following number representations, how large is the magnitude of y relative to the
magnitude of X? Circle ONE choice per row.

Unsigned lyl < Ix] lyl = IxI lyl > Ix] Can’t Tell
One’s Complement Iyl < IxI] lyl = IxI] Iyl > IxI] Can’t Tell
Two’s Complement Iyl < Ix] lyl = Ix] lyl > Ix] Can’t Tell
Sign and Magnitude Iyl < Ix] lyl = IxI lyl > Ix] Can’t Tell
Biased Notation

< |Ix = Ix > |x 't Tell
(os. £P oxpomont] VI < Il | Iyl = Ixl | Iyl > IxI | cantTe

Question 3: Doctor Who?!? (10 Points, 18 Minutes)

The Daleks are invading the Earth again, and we need the help of the Doctor! Find the errors in this
code and fix them so that the code correctly prints "The 10th Doctor and the Blue Police Box". There is
exactly one coding error for each function and function call pair and can be fixed by changing 5 or 6 lines

total. Fill in the corrections in the blanks on the opposite page.

void whichDoctor(int* input) {
input = 10;
}

void doctorChanger(char** inputl, char** input2) {
char* temp = *inputl;
*inputl = *input2;

*input2 = temp;

}

char* policeBoxGiver(char* input) {
*input = "The Master";
return "Police Box";

}

char* colorMaker(void) {
char* color = malloc(sizeof(char) * 4);

color[0] = "B";
color[1] = "I";
color[3] = "u-";
color[2] = "e";
color[4] = O;

return color;

}

char* colorFixer(char* input) {
char temp = *(input+2);
*(input+2) *(input+1);
*(input+1) temp;

int main(void) {
int * ith = malloc(sizeof(int));

whichDoctor(ith);

char* doctor = ""Master';
char* master = "Doctor"';
char* details = "and the';

char* color = colorMaker();
colorFixer(color);

char* box = "David Tennant';
doctorChanger(doctor, master);
policeBoxGiver(box);

printfF("'The %dth %s %s %s %s",*ith,doctor,details,color,box);

Login: cs6lc-

Line # Corrected Code

Question 4: Let Me Float This Idea By You (9 Points, 16 Minutes)

For a very simple household appliance like a thermostat, a more minimalistic microprocessor is desired
to reduce power consumption and hardware costs. We have selected a 16-bit microprocessor that does
not have a floating-point unit, so there is no native support for floating point operations (no
float/double). However, we’d still like to represent decimals for our temperature reading so we're
going to implement floating point operations in software (in C).

a) Define a new variable type called fp:

We have decided to use a representation with a 5-bit exponent field while following all of the
representation conventions from the MIPS 32-bit floating point numbers except denorms.

Fill in the following functions. Not all blanks need to be used. You can call these functions and assume
proper behavior regardless of your implementation. Assume our hardware implements the C operator
“>>" as shift right arithmetic.

b)

/* returns -num */
fp negateFP(fp num) {

return

c)

/* returns the signed value of the exponent */
int getExp(fp num) {

return

d)

/* multiplies floating point num by 2”n, while detecting over/underflow */
/* remember, there are no denorms */
fp multPow2(fp num,int n) {

if() exit(1l); #overflow
if) exit(-1); #underflow
return ;

Login: cs6lc-

Question 5: Who Says Less is Better? (10 points, 18 Minutes)

We're going to take a page out of the ARM book and design a new instruction set architecture with just
16 32-bit registers. This means that we only need 4-bit register fields in our instructions.

a) How many extra bits do we have now for other fields in the following formats?
R: J:

b) For R-format instructions, would you give the extra bits to opcode, shamt, or funct?
Explain your choice in a sentence or two (no credit without explanation):

For I-format instructions, we naturally give the extra bits to the immediate field, resulting in the
following format:

[opcode (6) | rs (4) | rt (4) | immediate (18)]

c) What fraction of our address space can we now reach with a branch instruction?

d) Assume our PC currently contains the address 0x08000000.
What is the LOWEST address (in hex) we can reach with a branch?

e) Write out the Verilog pseudocode (as in the OPERATION column on the MIPS Green Sheet) for beq.
Make sure you specify what BranchAddr is.

Question 6: Cache in While You Can (17 points, 26 Minutes)

Consider a single 4KiB cache with 512B blocks and a write-back policy. Assume a 32-bit address space.

a) If the cache were direct-mapped,

of rows? # of offset bits?

b) If the cache were 4-way set associative,

of tag bits? # of index bits? # of bits per cache slot?

Consider an array of the following location structs:

typedef struct {
... // some undefined number of other struct members
int visited;
int danger;

} location;

location locs[NUM_LOCS];

Here's a piece of code that counts the number of places we've visited. Assume this gets executed
somewhere in the middle of our program, that count is held in a register, and the size of the array is
greater than 4 KiB.

for(int 1 = 0; 1 < NUM_LOCS; i++)
if(locs[i]-visited) count++;

c) What's the fewest possible number of bytes written to main memory?

d) What's the greatest possible number of bytes written to main memory?

Now consider if we store the visited and danger information in individual arrays instead:

int visited[NUM_LOCS];
int danger[NUM_LOCS];

e) This way, the cache can exploit better for the above task.

We can expect a (higher or lower) miss rate

because of the change in the number of (type of cache miss) misses.

Login: cs6lc-

Consider the following code with NUM_LOCS > 2/10.
for(int 1 = 0; 1 < NUM_LOCS; i++)
if(visited[i] && danger[i] > 5) count++;
Two memory accesses are made per iteration: one into visited, the other into danger. Assume that

the cache has no valid blocks initially. You are told that in the worst case, the cache has a miss rate of
100%. Consider each of the following possible changes to the cache individually.

f) Mark each as E, if it eliminates the chances of this worst-case scenario miss rate, R if it reduces the
chances, or N if it’s not helpful.
e More sets, same block size, same associativity
e Double associativity, half block size, same total cache size

e Everything stays the same but use a write-through policy instead

Question 7: Can’t Make Copies Fast Enough (12 points, 22 Minutes)

We are revisiting our friend the Fast String Copy from lecture! Recall that the function prototype in Cis

as follows:

char *strcpy(char *dst, char *src);
Consider the following MIPS implementation of this function:

jal strcpy # begin function call
strecpy:

addi $v0,%$a0,0
loop: Ib $t0,0(%al)

sb $t0,0(%$a0)

addiu $a0,%a0,1

addiu $al,%al,1l

beq $t0,%$zero,exit
J loop

exit: jr $ra

Suppose we are running code on a machine with the following cache parameters:

e Unified L1S with a hit time of 2 cycles and a hit rate of 95%
e Miss Penalty to main memory of 200 cycles
e Base CPl of 1.5 (in the absence of cache misses)

a) Calculate our machine’s AMAT:

b) What is the CPI of a single call to strcpy with src = ””” (the function call includes the jal)?

c) We decide to add a L2$ to reduce our AMAT to 6. Our L2S has a hit time of 20 cycles. What’s the
worst Local Hit Rate that will still meet our AMAT goal?

10

Login: cs6lc-

d) In addition to speeding up our architecture, we want to speed up our code, so we decide to
eliminate the return value (presumably the caller retains a copy of the destination pointer). In this
case, the strcpy function above can be rewritten in just 6 instructions. Write out this
implementation in the blanks below, introducing any necessary labels (don’t worry about any label
name clashes with strcpy).

strcpy?2:

e) If we call strcpy and strcpy2 on the same src string of length n+1=N (N includes “\07), what is
the ratio of instructions executed in strcpy to instructions executed in strcpy?2 (including the
jal)? Leave your answer in terms of N.

f) Isthe ratio in part (e) the same as the relative performance between these two functions? In a

sentence or two, explain why or why not.

11

Question 8: Putting the Science in Computer Science (26 points, 40 minutes)

DNA can be called the “alphabet of life.” From a very simplified view, DNA within a cell produces amino
acids, which in turn produce proteins, which are the building blocks for most of your body. Here we’d
like to write some code for examining a strand of DNA.

a) DNA is made up of nucleotides, which we write shorthand as A, C, G, and T. DNA is in base 4
(quaternary)! Fill in the table below, using the DNA nucleotide symbols in alphabetical order
(A<C<G<T).

Decimal DNA
CAT

50

An amino acid is encoded by three nucleotides. Because DNA is found in long strands, the following 5
nucleotides can be read 3 different ways:

Reading Frame 1

’A_E-RTG

o

Reading Frame 2

The sequence ATG (as seen in the 3" reading frame) signals the beginning of a protein (“start codon”).

b) Fill in the blanks on the opposite page for the recursive function Find_start in MIPS that returns
the position of the first start codon found in the given strand of DNA. Assume each nucleotide is
stored as a char in memory. Blanks do not necessarily need to be filled. Maximum points awarded
for using the fewest amount of registers and memory.

[Answer the following AFTER looking at the code]

Assume we call Find_start from main with char dna[] = “GCATGC”;.
c¢) How many total frames are created on the Stack (not including main)?
d) Whatis the maximum depth of the Stack (in # of frames, not including main)?

e) What will the line J ret look like once this file is run through the assembler?

f) Where will the label ret show up? (Circle one)

Symbol Table Relocation Table Both Neither

12

Login: cs6lc-

C function prototype: /* dna: start address of DNA strand */

/* pos: search position from start of strand */
int find_start(char *dna, iInt pos);

chk:

rec:

ret:

find_start:

addiu $sp,$sp,_ # PROLOGUE

jal strilen # call strlen(dna); Assume strlen doesn’t
change $a0 or $al
make sure we don’t read past the end of

the array

beq $t0,$0,chk # “chk” for check if start codon
addi $v0,%$0,-1 # return -1 (start codon not found)
J ret # “ret” for return

Ib $t1,0($t0)
addi $t2,%$0,65

bne $tl1,$t2,rec # “rec’ for recurse
Ib $t1,1($t0)

addi $t2,%0,
bne $t1,$t2,rec
b $t1,2($t0)

addi $t2,%0,
bne $t1,$t2,rec

return current position

j ret

recurse at next position

jal find_start

EPILOGUE

addiu $sp,$sp,_
jr $ra

13

BACK OF EXAM
(Any work on this page will not be graded)

14

