Student Name:

Student ID#: _____

Potentially Useful Information

Violet	Blue	Green	Yellow	Orange	Red	
400	-	500	600		700	
Wavelength (nm)						

Light: $\lambda v = c$, $E_{photon} = hv$, $c = 2.99792 \times 10^8 \text{ m s}^{-1}$

$$N_A = 6.02214 \text{ x } 10^{23} \text{ mol}^{-1}$$

Photoelectric Effect: $E_{kin}(e-) = h\nu - \Phi = h\nu - h\nu_0$

$$h = 6.62608 \times 10^{-34} \text{ J s}$$

Matter: p = mv, $E_{kin} = \frac{mv^2}{2} = \frac{p^2}{2m}$

$$\mathcal{Z}$$
= 3.28984 x 10¹⁵ Hz

Wave/Matter: $\lambda_{deBroglie} = \frac{h}{p}$

$$R_{*} = h \mathcal{Z} = 2.17987 \text{ x } 10^{-18} \text{ J}$$

Particle 1D box: $E_n = \frac{h^2 n^2}{8mI^2}$; n = 1, 2, 3...

$$R_{\star}/mole = 1312 \text{ kJ/mol}$$

H atom, 1-electron ion: $E_n = -\left(\frac{Z^2}{n^2}\right)R_{\infty}$; n = 1,2,3...

$$m_e = 9.10938 \times 10^{-31} \text{ kg}$$

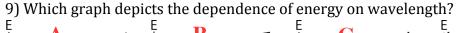
Orbital Nodes: Total = n - 1, Angular = ℓ , Radial = $n - 1 - \ell$

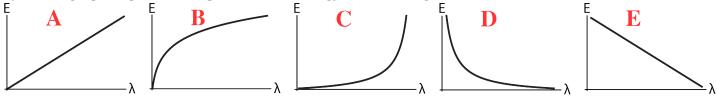
	H	Na	K	Rb	Cl	Br	Ι.
Ionization Energy [IE] (kJ/Mole)	1312	496	419	403	1251	1140	1008
Electron Affinity [EA] (kJ/Mole)	73	53	48	47	349	325	295 .

You may verify that the IE of atomic H corresponds to UV light with a photon wavelength of 91 nm.

For graders use only

MC Score


Students Name							
1) Which compound h	nas the lowest percenta	ge of iodine by mass?					
A) IF ₃	B) BaI ₂	C) FeI ₃	D) AlI ₃	E) CaI ₂			
2) A Nickel solution is green. What color will the solution be through a green colored lens?							
A) white	B) black	C) blue	D) red	E) green			
3) One mole of carbon atoms reacts to form C_{60} , buckminsterfullerene molecules. How many moles of C_{60} are formed?							
A) 6.0×10^{23}	B) 1.0 x 10 ²²	C) 60	D) 1.0	E) 1.7×10^{-2}			
4) Which species has	seven protons, seven e	lectrons, and eight neu	trons?				
A) ¹⁵ N	B) ¹⁴ N	$(C)^{14}N^+$	D) ³⁰ P	E) $^{30}P^{+}$			
5) Hydrogen has two stable isotopes, ¹ H and ² H, and carbon has two stable isotopes, ¹² C and ¹³ C. Which isotopic species of methane (CH ₄) will give a peak at mass 19 in a mass spectrometer?							
A) ¹² C ¹ H ₄	B) ¹² C ¹ H ₂ ² H ₂	C) $^{12}C^{1}H^{2}H_{3}$	D) ¹³ C ¹ H ² H ₃	E) ¹³ C ² H ₄			
6) An oxide of titaniu A) TiO ₂		% oxygen by weight. C) Ti ₂ O ₃	•	la is: E) Ti ₃ O ₂			
7) The radiation abso	orbed in the transitio	n from n = 2 to n = 3 i e wavelength of radia	n a neutral hydrogen	atom has a			


B) 657 nm C) 1051 nm D) 1314 nm

A) 103 nm

E) 4205 nm

- 8) The n=3 to n=2 emission in H is at $\lambda=657.0$ nm. At what wavelength (in nm) is the n=6 to n=4 emission in He⁺.
 - A) 103
- B) 328.5
- C) 657.0
- D) 2628
- E) 5256

- 10) If the De Broglie wavelength of electrons moving at speed 300 m/s is 0.06 nm. Which of the following has the shortest De Broglie wavelength?
 - A) IR light

B) UV Light

C) 1 nm X-rays

- D) electrons at 3 m/s
- E) electrons at 30 m/s

- 11) Which transitions in hydrogen correspond to the absorption of light with the longest wavelength?
 - A) $1 \rightarrow 2$
- B) 2 → 3
- C) $3 \rightarrow 4$
- D) $2 \rightarrow 4$
- E) $3 \rightarrow 5$

- 12) The ionization energy of H(1s) is 1312 kJ/mole. What is the ionization energy of $He^+(2s)$ in kJ/mole?
 - A) 328
- B) 656
- C) 1312
- D) 2624
- E) 5248

- 13) How many radial nodes are there in a 3p atomic orbital?
 - A) 0

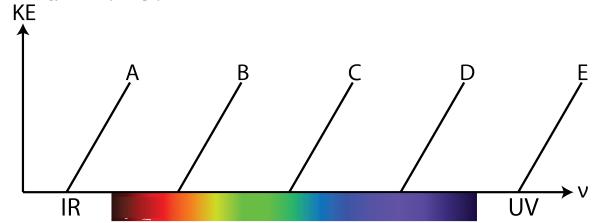
B) 1

C) 2

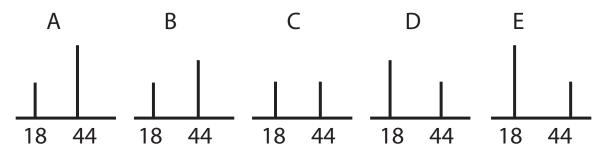
D) 3

E) 4

- 14) Which species can have the electron configuration 1s²2s²2p⁴3s¹?
 - A) 0+


B) 0-

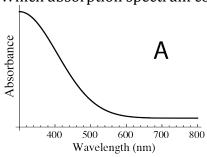
C) F+

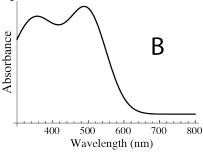

- D) F-
- E) Ne

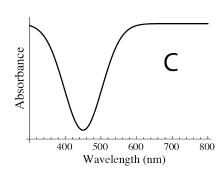
- 15) Which has the lowest ionization energy?
 - A) H(1s1)
- B) H(2p¹)
- C) $He^{+}(3p^{1})$
- D) He(1s¹2p¹)
- E) $He(1s^1 3p^1)$

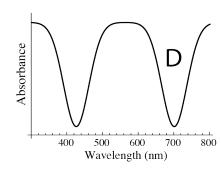
16) The ionization energy of H ($3p^1$) corresponds to infrared light. Which spectrum corresponds to the ionization energy of He ($1s^13p^1$)

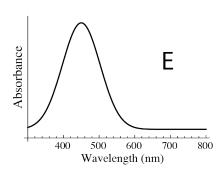
17) Which mass spectrum depicts the combustion products of acetylene (C_2H_2) with O_2 ?

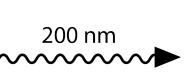

- 18) 1 g of a hydrocarbon reacts with excess O_2 to form H_2O and 3 grams CO_2 . What is the empirical formula of the hydrocarbon?
 - A) CH₄
- B) CH₂
- C) CH
- D) C_3H_8
- E) C₂H₅


- 19) Which element has the ground state electron configuration [Ar]3d104s24p2
 - A) Si


B) Ar


- C) Ge
- D) Kr
- E) Bk


20) Which absorption spectrum corresponds to a blue solution?



21) Two photons of light hit a material that redistributes their energy. One photon is emitted from the material at 200 nm. One of the incident photons has a wavelength of 600 nm. What is the wavelength, *X*, of the other incident photon?

- A) 200 nm
- B) 300nm
- C) 400 nm
- D) 600 nm
- E) 800 nm

- 22) Which of these atoms would become more paramagnetic by gaining an electron?
 - A) C

B) N

C) 0

D) F

- E) Na
- 23) Recall the notation $\ell=0$ (s), $\ell=1$ (p), $\ell=2$ (d), $\ell=3$ (f), $\ell=4$ (g). Which of the following is not a possible electron configuration for Argon?
 - A) $1s^22p^63d^{10}$
- B) $1s^22p^64d^{10}$
- C) $1s^23d^64f^{10}$
- D) $1s^24d^64f^{10}$
- E) $1s^24f^64g^{10}$
- 24) What is the maximum number of electrons that can occupy the n = 4 shell?
 - A) 4

B) 8

- C) 16
- D) 32
- E) 64

25) Which of the following states for a particle in a 1D box has the highest energy?

A)
$$n = 1$$
, $L = 1$

B)
$$n = 1$$
, $L = 2$

C)
$$n = 2$$
, $L = 1$

D)
$$n = 2$$
, $L = 3$

E)
$$n = 3$$
, $L = 2$

- 26) When 686.0 g of the lead oxide Pb_3O_4 is heated, decomposition occurs producing 16.0 g of O2 gas and 670.0 g of a different lead oxide. What is the empirical formula of this second oxide?
 - A) PbO
- B) Pb₂O
- C) PbO₂
- D) Pb₂O₃
- E) Pb_{1.5}O