[3]

- 1. Let $f(x,y) = y^2 e^{xy}$.
- [4] (a) Find the linearization of f at the point (0,1).

[3] (b) Find the derivative of f in the direction of $\mathbf{v} = \langle 3, -4 \rangle$ at the point (0, 1).

(c) If x(t) = 2 - 2t and $y(t) = t^2$, use the chain rule to find the tangent vector to the curve $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ when t = 1.

(d) Verify that the tangent vector found in part (c) is tangent to the surface z = f(x, y) at the point (0, 1, 1).

[8]

[7]

- 2. Let $f(x,y) = 8x^3 + 12xy y^3$.
 - (a) Find and classify the critical points of f.

(b) Find the absolute maximum and minimum of f on the set D given by the triangular region with vertices at (0,0), (1,0), and (1,-2).

Test # 2

[2]

3. (a) Define what it means for a function f(x, y, z) to be *continuous* at a point (a, b, c) in its domain.

(b) Define what it means for a function f(x, y, z) to be differentiable at a point (a, b, c) in its domain.

[5] (c) Show that if f is differentiable at a point (a, b, c), then it is continuous at (a, b, c).

Hint: You can show this using only the above two definitions and the limit laws.