
CS 61A Structure and Interpretation of Computer Programs

Fall 2012 Midterm 1

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” ⇥ 11”
crib sheet of your own creation and the o�cial 61A midterm 1 study guide attached to the back of this exam.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam

is my own. (please sign)

For sta↵ use only

Q. 1 Q. 2 Q. 3 Q. 4 Total

/12 /12 /14 /12 /50

2

1. (12 points) The Call Express is Delayed

For each of the following call expressions, write the value to which it evaluates and what would be output by
the interactive Python interpreter. The first two rows have been provided as examples.

• In the Evaluates to column, write the value to which the expression evaluates. If evaluation causes an
error, write Error.

• In the column labeled Interactive Output, write all output that would be displayed during an interactive
session, after entering each call expression. This output may have multiple lines. Whenever the interpreter
would report an error, write Error. You should include any lines displayed before an error.

Assume that you have started Python 3 and executed the following statements:

from operator import add , mul

def square(x):

return mul(x, x)

def delay(arg):

print(’delayed ’)

def g():

return arg

return g

Expression Evaluates to Interactive Output
square(5) 25 25

1/0 Error Error

print(square(4))

square(square(print(2)))

print(add(3, 4), print(5))

delay(square)(3)

add(delay(square)()(2), 1)

delay(delay)()(6)()

Login: 3

2. (12 points) Protect the Environment

(a) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global frame

horse

mask

func horse(mask)

func λ(horse)

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

Return Value

4

(b) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global frame

p

s

y

func gang(p)

func style(s)

Return Value

Return Value

Return Value

Return Value

gang

style

1
2
3

p, s, y = 1, 2, 3

def gang(p):
 nam = style(p)
 return (nam(4), 5)

def style(s):
 return lambda y: (p, s, y)

gang(3)

Login: 5

3. (14 points) Sequences

(a) (2 pt) Fill in the blanks so that the final call expression below evaluates to a tuple value.

def pair(x):

if x == 30:

return lambda: (1, 2, 3)

else:

return lambda: 4

(lambda______________ , soda: hall_______________)(pair , "sequence")

(b) (2 pt) Draw a box and pointer diagram for the following rlist:

a = rlist(1, rlist(rlist(2, (3, empty_rlist)), rlist ((4, 5, 6), empty_rlist)))

(c) (2 pt) What is the element at index 1 of this rlist, returned by getitem_rlist(a, 1)?

def getitem_rlist(s, i):

""" Return the element at index i of recursive list s."""

while i > 0:

s, i = rest(s), i - 1

return first(s)

(d) (2 pt) What is the length of this rlist, returned by len_rlist(a)?

def len_rlist(s):

""" Return the length of recursive list s."""

length = 0

while s != empty_rlist:

s, length = rest(s), length + 1

return length

6

(e) (6 pt) When the int constructor is called on a float value, it “truncates toward zero,” meaning that it
returns the largest integer less than any positive argument, or the least integer greater than any negative
argument. For example:

>>> int (2)

2

>>> int (2.7)

2

>>> int (-1.5)

-1

Assume that you have started Python 3 and executed the following statements:

def alt(f, g, z):

while g(z) > 0 and z != 5:

f, g = g, f

z = g(z)

return z

def grow(x):

return int((x * 3) / 2)

def shrink(x):

return x - 2

def flip(x):

return int (10 / (x-2))

For each of the following call expressions, write the value to which it evaluates. If evaluation causes an error,
write Error. If evaluation would run forever, write Forever.

• alt(grow, shrink, 3)

• alt(grow, shrink, 4)

• alt(flip, shrink, 3)

Login: 7

4. (12 points) In Verse

The inverse of some function F There once was a rhyming device

is a function of argument X That was built to make any sound, twice,

that returns you the Y, But used orthography

such that when you apply And not phonology

F to Y you recover the X. To decide if a rhyme would su�ce.

An invertible function is a function that takes and returns a single numeric value, is di↵erentiable, and never
returns the same value for two di↵erent arguments. Some examples:

def double(y):

""" Return twice the value of y."""

return 2 * y

def cube(y):

""" Return y raised to the third power."""

return pow(y, 3)

def pow2(y):

""" Return 2 raised to the power of y."""

return pow(2, y)

(a) (4 pt) Implement a function invert that takes an invertible function argument and returns its inverse. You
may call find root, newton update, approx deriv, and/or iter improve. You cannot use any assignment,
conditional, while, or for statements.

def invert(f):

""" Return the inverse of invertible function f.

>>> halve = invert(double)

>>> halve (12)

6.0

>>> cube_root = invert(cube)

>>> cube_root (27)

3.0

>>> log2 = invert(pow2)

>>> log2 (32)

5.0

"""

8

A sight rhyme is a pair of words that do not rhyme, but have the same endings, such as device and o�ce.
Two numbers that end in the same digit can be sight rhymes. For example:

• (13, 53) are pronounced thirteen and fifty-three, despite both ending with the same one’s digit 3.
• (0, 30) are pronounced zero and thirty, despite both ending with the same one’s digit 0.

(b) (4 pt) A numpair is a pair of integers that have the same one’s digit. Fill in the two missing expressions in
the constructor below, which takes two non-negative integers less than 100, asserts that they have the same
one’s digit, and returns a numpair represented as a pair of tens digits and the shared one’s digit.

from operator import floordiv , mod # Use these functions or // and %

def numpair(first , second):

""" Return a numpair as a pair of ten’s digits and a shared one’s digit.

>>> numpair (23, 53)

((2, 5), 3)

>>> numpair (67, 7)

((6, 0), 7)

"""

assert ___ , "different one’s"

return __

(c) (4 pt) Fill in four missing expressions below so that sight_rhyme returns whether the numbers in a
numpair p do not end with the same sound when pronounced. Your implementation cannot depend on the
representation of a numpair; use selector functions. You cannot use the boolean operators and or or.

def ones(p):

return p[1]

def first_tens(p):

return p[0][0]

def second_tens(p):

return p[0][1]

def sight_rhyme(p):

""" Return whether the two numbers in a numpair do not rhyme.

>>> sight_rhyme(numpair (13, 53))

True

>>> sight_rhyme(numpair(0, 30))

True

>>> sight_rhyme(numpair (53, 23))

False

"""

if __:

return __

elif ones(p) == 0:

if first_tens(p) == 0:

return __

else:

return __

else:

return False

CS 61A Midterm 1 Study Guide – Page 1

208
mul(add(2, mul(4, 6)), add(3, 5))

add(2, mul(4, 6))
26mul

add 2
mul(4, 6)

mul 4 6

24

add(3, 5)

add 3 5

8

-2
2

-2
None

abs(number):

print(...):

display “-2”

2, 10
1024

pow(x, y):

Pure Functions

Non-Pure Functions

A name evaluates to the value bound to that name in the
earliest frame of the current environment in which that
name is found.

Defining:

Call expression:

square(x):

return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square(x):

return mul(x, x)

Def
statement

Formal parameter

Body

Return
expression

(return statement)

operand: 2+2
argument: 4operator: square

function: square

Intrinsic name

4

16Argument

Return value

 <header>:
 <statement>
 <statement>
 ...
 <separating header>:
 <statement>
 <statement>
 ...
 ...

Compound statement

Suite

Clause

Each clause is considered in order.
1.Evaluate the header's expression.
2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.

1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then
return to step 1.

Execution rule for while statements:

Execution rule for def statements:

Execution rule for assignment statements:

Evaluation rule for call expressions:

Execution rule for conditional statements: hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single
argument (not called term)

A formal parameter that
will be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 13 + 23 + 33 + 43 + 55

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Nested def statements: Functions defined within other
function bodies are bound to names in the local frame

Evaluation rule for or expressions:

Evaluation rule for and expressions:

Evaluation rule for not expressions:

Applying user-defined functions:

1.Evaluate the operator and operand subexpressions.
2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

1.Create a new local frame with the same parent as the
function that was applied.

2.Bind the arguments to the function's formal parameter
names in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Its parent is the first frame of the current environment.
3.Bind the name of the function to the function value in the
first frame of the current environment.

1.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values,
in the first frame of the current environment.

1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.

A name is bound to a value

In a frame, there is at most
one binding per name

Statements and expressions
Red arrow points to next line.
Gray arrow points to the line
just executed

Frames (right):Code (left):

Import statement

Assignment statement

Name Value

Binding

Local frame

Intrinsic name of
function called

Formal parameter
bound to argument Return value is

not a binding!

Built-in function

User-defined
function

2

1

“mul” is
not found

2

1

3

1

2 1

Always
extends

When a frame or
function has no label

[parent=___]

 then its parent is
always the global

frame

Always
extends

A three-frame
environment

A two-frame
environment

The global environment:
 the environment with only the global frame

A frame extends the environment that begins with its parent

2

1

“y” is
not found

“y” is
not found

Error

 def abs_value(x):

 if x > 0:
 return x
 elif x == 0:
 return 0
 else:
 return -x

1 statement,
3 clauses,
3 headers,
3 suites,
2 boolean
 contexts

•An environment is a
sequence of frames

•An environment for a non-
nested function (no def
within def) consists of
one local frame, followed
by the global frame

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

from operator import floordiv, mod
def divide_exact(n, d):
 """Return the quotient and remainder of dividing N by D.

 >>> q, r = divide_exact(2012, 10)
 >>> q
 201
 >>> r
 2
 """
 return floordiv(n, d), mod(n, d)

CS 61A Midterm 1 Study Guide – Page 2

A function that returns a function

A local
def statement

The name add_three is
bound to a function

Can refer to names in
the enclosing function

square = lambda x,y: x * y

and body "return x * y"
with formal parameters x and y

A function

Must be a single expression

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same arguments & behavior

• Both of those functions are associated with the environment
in which they are defined

• Both bind that function to the name "square"

• Only the def statement gives the function an intrinsic name

@trace1
def triple(x):
 return 3 * x

is identical to

def triple(x):
 return 3 * x
triple = trace1(triple)

No
• Square takes one argument.
• Square has the intrinsic name square.
• Square computes the square of a number.
• Square computes the square by calling mul.

Yes
What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x)+square(y)

Yes
No

• Compound objects combine objects together
• An abstract data type lets us manipulate compound objects as units
• Programs that use data isolate two aspects of programming:

 How data are represented (as parts)
 How data are manipulated (as units)

• Data abstraction: A methodology by which functions enforce an
abstraction barrier between representation and use

Begin with a function f and
an initial guess x

 (x, f(x))

-f(x)/f'(x)

-f(x)

�� ���)
�����

>>> f = lambda x: x*x - 2
>>> find_zero(f, 1)
1.4142135623730951

How to find the square root of 2?

1. Compute the value of f at the guess: f(x)
2. Compute the derivative of f at the guess: f'(x)
3. Update guess to be:

Multiple return values,
separated by commas

Multiple assignment
to two names

def mul_rational(x, y):
 return rational(numer(x) * numer(y), denom(x) * denom(y))

Constructor Selectors

def add_rational(x, y):
 nx, dx = numer(x), denom(x)
 ny, dy = numer(y), denom(y)
 return rational(nx * dy + ny * dx, dx * dy)
def eq_rational(x, y):
 return numer(x) * denom(y) == numer(y) * denom(x)

def rational(n, d):
 """Construct a rational number x that represents n/d."""
 return (n, d)

from operator import getitem
def numer(x):
 """Return the numerator of rational number x."""
 return getitem(x, 0)

def denom(x):
 """Return the denominator of rational number x."""
 return getitem(x, 1)

def pair(x, y):
 """Return a functional pair."""
 def dispatch(m):
 if m == 0:
 return x
 elif m == 1:
 return y
 return dispatch
def getitem_pair(p, i):
 """Return the element at index i of pair p."""
 return p(i)

This function
represents a pair

def iter_improve(update, done, guess=1, max_updates=1000):
 """Iteratively improve guess with update until done returns a true value.

 >>> iter_improve(golden_update, golden_test)
 1.618033988749895
 """
 k = 0
 while not done(guess) and k < max_updates:
 guess = update(guess)
 k = k + 1
 return guess

def newton_update(f):
 """Return an update function for f using Newton's method."""
 def update(x):
 return x - f(x) / approx_derivative(f, x)
 return update

def approx_derivative(f, x, delta=1e-5):
 """Return an approximation to the derivative of f at x."""
 df = f(x + delta) - f(x)
 return df/delta

def find_root(f, guess=1):
 """Return a guess of a zero of the function f, near guess.

 >>> from math import sin
 >>> find_root(lambda y: sin(y), 3)
 3.141592653589793
 """
 return iter_improve(newton_update(f), lambda x: f(x) == 0, guess)

2

1

3

1

2

3

• Every user-defined function has a
parent frame

• The parent of a function is the
frame in which it was defined

• Every local frame has a parent
frame

• The parent of a frame is the
parent of the function called

A
recursive
list is a

pair
The first element of
the pair is the first
element of the list

The second element of
the pair is the rest

of the list

None
represents
the empty

list

empty_rlist = None
def rlist(first, rest):
 """Make a recursive list from its first element and the rest."""
 return (first, rest)
def first(s):
 """Return the first element of a recursive list s."""
 return s[0]
def rest(s):
 """Return the rest of the elements of a recursive list s."""
 return s[1]

If a recursive list s is constructed from a first element f and
a recursive list r, then
• first(s) returns f, and
• rest(s) returns r, which is a recursive list.

Length. A sequence has
a finite length.

Element selection. A
sequence has an
element corresponding
to any non-negative
integer index less
than its length,
starting at 0 for the
first element.

def len_rlist(s):
 """Return the length of recursive list s."""
 length = 0
 while s != empty_rlist:
 s, length = rest(s), length + 1
 return length

def getitem_rlist(s, i):
 """Return the element at index i of rlist s."""
 while i > 0:
 s, i = rest(s), i - 1
 return first(s)

A function’s signature
has all the information
to create a local frame

