
CS 61A Structure and Interpretation of Computer Programs
Fall 2012 Midterm 2 Solutions

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” × 11”
crib sheet of your own creation and the two official 61A midterm study guides attached to the back of this
exam.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)

For staff use only

Q. 1 Q. 2 Q. 3 Q. 4 Total

/16 /12 /14 /8 /50

2

THIS PAGE INTENTIONALLY LEFT BLANK

Login: 3

1. (16 points) Expressionism

(a) (8 pt) For each of the following expressions, write the repr string of the value to which the expression
evaluates. Special cases: If an expression evaluates to a function, write Function. If evaluation would
never complete, write Forever. None of these expressions cause an error.

Assume that the expressions are evaluated in order. Evaluating the first may affect the
value of the second, etc.

Assume that you have started Python 3 and executed the following statements:

def countdown(s, t):

buzz = [t]

def nas(a):

nonlocal t

t = buzz [0]+’s’

buzz.append(t)

return s(a)

def aldrin ():

return buzz

return nas , aldrin

def endeavor(k):

return k*len(discovery ())

atlantis , discovery = countdown(endeavor , ’u’)

Expression Evaluates to
5*5 25

discovery()

[’u’]

atlantis(1)

2

atlantis(len(discovery()))

6

discovery()

[’u’, ’us’, ’us’]

4

(b) (8 pt) For each of the following expressions, write the repr string of the value to which the expression
evaluates. Special cases: If an expression evaluates to a function, write Function. If evaluation would
never complete, write Forever. None of these expressions cause an error.

Assume that the expressions are evaluated in order. Evaluating the first may affect the
value of the second, etc.

Assume that you have started Python 3 and executed the following statements:

class Lawyer(object):

def __init__(self , s):

if len(s) < 2:

self.s = s

else:

self.s = Lawyer(s[2:])

def __repr__(self):

return ’Lawyer(’ + repr(self.s) + ’)’

def think(self):

if hasattr(self , ’decide ’):

return self.decide ()

while type(self.s) == Lawyer:

self.s = self.s.s

return self.s

class CEO(Lawyer):

def decide(self):

return ’Denied ’

obama = Lawyer ([’a’, ’b’, ’c’])

romney = CEO([’x’, ’y’, ’z’])

Expression Evaluates to
5*5 25

obama.think()

[’c’]

obama

Lawyer([’c’])

romney

Lawyer(Lawyer([’z’]))

Lawyer.think(romney)

’Denied’

Login: 5

2. (12 points) Picture Frame

(a) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global frame

oski func oski(bear)

def oski(bear):
 def cal():
 nonlocal bear
 if bear == 0:
 return bear
 furd = bear
 bear = bear - 1
 return (furd, cal())
 return cal()

oski(2)

Return Value

Return Value

Return Value

Return Value

2

tuple
0 1

f1: oski

bear 0

cal func cal() [parent=f1]

1

tuple
0 1

0
 cal [parent=f1]

furd 2

furd 1

 cal [parent=f1]

 cal [parent=f1]

0

6

(b) (5 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global frame

beep

b

func beep(oo, ee)

Return Value

def beep(oo, ee):
 b[oo] = [b[ee], oo, [b[ee]]]
 return b[oo]

b = list(range(3, 6))
beep(0, 1).append('not found')

Return Value

beep

oo

ee

0

1

list
10 2

list
0
4

1 2

4 5

0 ‘not found’

list
0
4

3

(c) (1 pt) What will print(b) output after executing this code?

[[4, 0, [4], ’not found’], 4, 5]

Login: 7

3. (14 points) Objets d’Art

(a) (6 pt) Cross out whole lines in the implementation below so that the doctests for Vehicle pass. In
addition, cross out all lines that have no effect. Don’t cross out docstrings, doctests, or decorators.

class Vehicle(object):

"""

>>> c = Car(’John ’, ’CS61A ’)

>>> c.drive(’John ’)

John is driving

>>> c.drive(’Jack ’)

Car stolen: John CS61A

>>> c.pop_tire ()

3

>>> c.pop_tire ()

2

>>> c.fix()

>>> c.pop_tire ()

3

"""

def __init__(self , owner):

self.owner = owner

def move(self):

print(self.owner + ’ is driving ’)

class Car(Vehicle):

tires = 4

def __init__(self , owner , license_plate):

Vehicle.__init__(self , owner)

self.plate = license_plate

self.tires = Car.tires # This line is optional

def drive(self , person):

if person != self.owner:

print(’Car stolen: ’ + self.identification)

else:

Car.move(self)

@property

def identification(self):

return self.owner + ’ ’ + self.plate

def pop_tire(self):

self.tires -= 1

return self.tires

def fix(self):

setattr(self , ’tires’, type(self). tires)

8

(b) (6 pt) The max path function takes an instance of the Tree class from Study Guide 2. It is meant to
return the maximal sum of internal entry values on a path from the root to a leaf of the tree.

def max_path(tree):

""" Return the sum of entries in a maximal path from the root to a leaf.

>>> max_path(Tree(3, Tree(4), Tree(-2, Tree(8), Tree (3))))

9

>>> max_path(Tree(9, None , Tree(1, Tree(-2, Tree(5), Tree (2)), None)))

13

"""

paths = [0]

if tree.right is not None:

paths.append(max_path(tree.right))

if tree.left is not None:

paths.append(max_path(tree.left))

tree.entry += max(paths)

return tree.entry

Circle True or False to indicate whether each of the following statements about max path is true.

i. (True/False) It returns the correct result for all doctests shown.

ii. (True/False) It returns the correct result for all valid trees with integer entries.

iii. (True/False) It may change (mutate) its argument value.

iv. (True/False) It may run forever on a valid tree.

(c) (2 pt) Define a simple mathematical function f(n) such that evaluating max path(tree) on a tree with
n entries performs Θ(f(n)) function calls.

f(n) = n

Login: 9

4. (8 points) Form and Function

(a) (4 pt) You have been hired to work on AI at UnitedPusherElectric, the leading manufacturer of Pusher
Bots. The latest model, PusherBot 5, keeps pushing people down stairs when it gets lost. Fix it!

Assume that you have an abstract data type position that combines x and y coordinates (in meters).

>>> pos = position(3, 4)

>>> x(pos)

3

>>> y(pos)

4

pathfinder should return a visit function that takes a position argument. visit returns True unless:

i. Its argument position is more than 6 meters from position(0, 0), or

ii. Its argument position has been visited before.

The implementation below is incorrect. Cross out each line (or part of a line) that must change and write
a revised version next to it, so that pathfinder is correct and does not depend on the implementation
of position. Assume your corrections have the same indentation as the lines they replace. You may not
add or remove lines. Make as few changes as necessary.

from math import sqrt

def equal(position , other):

return x(position) == x(other) and y(position) == y(other)

def pathfinder ():

""" Return a visit function to help with path -finding.

>>> visit1 , visit2 = pathfinder (), pathfinder ()

>>> visit1(position(3, 4))

True

>>> visit1(position(5, 12)) # Too far away

False

>>> visit1(position(3, 4)) # Already visited

False

>>> visit2(position(3, 4))

True

"""

visited = [] # was ()

def visit(pos):

if sqrt(x(pos)*x(pos) + y(pos)*y(pos)) > 6:

return False

for p in visited: # was visit:

if equal(p, pos): # was p == pos:

return False # was True

visited.append(pos)

return True

return visit # was visited

10

(b) (4 pt) Fill in missing expressions in the implementation for list anagrams, which lists all anagrams
(reorderings of the letters) of a given word. You may assume that the word has no repeated letters. Some
hints about string slicing appear in the doctest.

def list_anagrams(w):

""" List all anagrams of word w.

>>> w = ’ate’

>>> w[:0]

’’

>>> w[len(w):]

’’

>>> list_anagrams(w)

[’ate ’, ’aet ’, ’tae ’, ’tea ’, ’eat ’, ’eta ’]

"""

if w == ’’:

return [’’]

anagrams = []

for i in range(len(w)):

subgrams = list_anagrams(w[:i] + w[i+1:])

anagrams += [w[i] + s for s in subgrams]

return anagrams

OR

if w == ’’:

return [’’]

anagrams = []

for i in range(len(w)):

subgrams = list_anagrams(w[1:])

anagrams += [s[:i] + w[0] + s[i:] for s in subgrams]

return anagrams

(c) (0 pt) Draw a picture of PusherBot 5.

