CS 61A Structure and Interpretation of Computer Programs
F&H 2012 MIDTERM 1 SOLUTIONS

INSTRUCTIONS

e You have 2 hours to complete the exam.

e The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” x 11”
crib sheet of your own creation and the official 61A midterm 1 study guide attached to the back of this exam.

e Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)

For staff use only

Q. 1] Q2| Q.3 Q.4 Total

/120 /12 J14| /12 /50

1. (12 points) The Call Express is Delayed

For each of the following call expressions, write the value to which it evaluates and what would be output by
the interactive Python interpreter. The first two rows have been provided as examples.

Assume that you have started Python 3 and executed the following statements:

from operator import add, mul
def square(x):
return mul(x, x)

def delay(arg):
print (’delayed’)
def g():
return arg
return g

Expression Evaluates to Interactive Output
square(5) 25 25
1/0 ERROR ERROR

16
print(square(4)) None
2
. Error

square (square(print(2))) Error

)

7 None
print(add(3, 4), print(5)) None oHe

delayed

Error
delay(square) (3) Error

delayed

D
add(delay(square)) (2), 1) 5

delayed

delayed
delay(delay) O (6) () 6 6

Login: 3

2. (12 points) Protect the Environment

(a) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

e Add all missing names, labels, and parent annotations to all local frames.
e Add all missing values created during execution.
e Show the return value for each local frame.

def horse(mask): Global frame

/\
horse = mask horse | & func horse(mask)
def mask(horse):
return horse mask | @—

return horse(mask)

mask = lambda horse: horse(2) |fl: horse

horse(mask) horse o—

mask *— func A(horse)

Return Value | 2

A /Nfunc mask(horse) [parent=f1]

horse 'd

Return Value 2

mask [parent=f1]

horse 2

Return Value 2

Return Value

(b) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

e Add all missing names, labels, and parent annotations to all local frames.

e Add all missing values created during execution.

e Show the return value for each local frame.

p' S' y = 1' 2' 3

def gang(p):
nam = style(p)
return (nam(4), 5)

def style(s):

return lambda y: (p, s, V)

gang(3)

Global frame

gang

style

.f”"————_—___-§“*func gang(p)

gang
p

nam

Return Value

3

o—

*—_|

fl: style

Return Value

—

.,4—’

Aly) [parent=f1]

y

Return Value

4

func style(s)

1

Return Value

——-§*func AMy) [parent=f1]
tuple
0 1
T 5
L tuple
[1 2
1 3 4

Login:

3. (14 points) Sequences

(a) (2 pt) Fill in the blanks so that the final call expression below evaluates to a tuple value.

def pair(x):
if x == 30:
return lambda: (1, 2, 3)
else:
return lambda: 4

(lambda

(lambda hall, soda: hall(30)())(pair, ”sequence”)

(b) (2 pt) Draw a box and pointer diagram for the following rlist:

a = rlist(l, rlist(rlist(2, (3, empty_rlist)), rlist((4, 5, 6),

tuple tuple tuple
0 1 0 1 0 1
—>| 1 o > T — ~> T None

k tuple
0 1 2

tuple tuple

2 e ~| 3 | None

(c) (2 pt) What is the element at index 1 of this rlist, returned by getitem_rlist(a, 1)7
(2, (3, None))

def getitem_rlist(s, 1i):
"""Return the element at index i of recursive list s."""
while i > O:
s, i = rest(s), i - 1
return first(s)

(d) (2 pt) What is the length of this rlist, returned by len_rlist(a)?
3

def len_rlist(s):
"""Return the length of recursive list s."""
length = 0
while s != empty_rlist:
s, length = rest(s), length + 1
return length

______________ , soda: hall_______________)(pair, "sequence")

empty_rlist)))

(e) (6 pt) When the int constructor is called on a float value, it “truncates toward zero,” meaning that it
returns the largest integer less than any positive argument, or the least integer greater than any negative
argument. For example:

>>> int (2)

2

>>> int (2.7)
2

>>> int(-1.5)
-1

Assume that you have started Python 3 and executed the following statements:

def alt(f, g, z):

while g(z) > 0 and z != 5:
f, g=¢g, £
z = g(z)

return z

def grow(x):
return int((x * 3) / 2)

def shrink(x):
return x - 2

def flip(x):
return int (10 / (x-2))

For each of the following call expressions, write the value to which it evaluates. If evaluation causes an error,
write ERROR. If evaluation would run forever, write FOREVER.

e alt(grow, shrink, 3)

e alt(grow, shrink, 4)

Forever

e alt(flip, shrink, 3)

Login: 7

4. (12 points) In Verse

The inverse of some function F There once was a rhyming device

is a function of argument X That was built to make any sound, twice,
that returns you the Y, But used orthography

such that when you apply And not phonology

F to Y you recover the X. To decide if a rhyme would suffice.

An invertible function is a function that takes and returns a single numeric value, is differentiable, and never
returns the same value for two different arguments. Some examples:

def double(y):
"""Return twice the value of y.
return 2 * y

def cube(y):
"""Return y raised to the third power."""
return pow(y, 3)

def pow2(y):
"""Return 2 raised to the power of y."""
return pow (2, y)

(a) (4 pt) Implement a function invert that takes an invertible function argument and returns its inverse. You
may call find _root, newton_update, approx_deriv, and/or iter_improve. You cannot use any assignment,
conditional, while, or for statements.

def invert(f):
"""Return the inverse of invertible function f£f.

>>> halve = invert (double)
>>> halve (12)

6.0

>>> cube_root = invert (cube)
>>> cube_root (27)

3.0

>>> log2 = invert (pow2)

>>> log2(32)

5.0

def g(x):

return find_root(lambda y: f(y) - x)
return g

(b)

(c)

A sight rhyme is a pair of words that do not rhyme, but have the same endings, such as device and office.
Two numbers that end in the same digit can be sight rhymes. For example:

e (13, 53) are pronounced thirteen and fifty-three, despite both ending with the same one’s digit 3.
e (0, 30) are pronounced zero and thirty, despite both ending with the same one’s digit 0.

(4 pt) A numpair is a pair of integers that have the same one’s digit. Fill in the two missing expressions in
the constructor below, which takes two non-negative integers less than 100, asserts that they have the same
one’s digit, and returns a numpair represented as a pair of tens digits and the shared one’s digit.

from operator import floordiv, mod # Use these functions or // and %

def numpair (first, second):
"""Return a numpair as a pair of ten’s digits and a shared one’s digit.

>>> numpair (23, 53)

(2, 5, 3

>>> numpair (67, 7)

(6, 0), 7

nmnn

assert first % 10 == second % 10

return ((first // 10, second // 10), first % 10)

(4 pt) Fill in four missing expressions below so that sight_rhyme returns whether the numbers in a
numpair p do not end with the same sound when pronounced. Your implementation cannot depend on the
representation of a numpair; use selector functions. You cannot use the boolean operators and or or.

def ones(p):
return pl[1]
def first_tens(p):
return pl[0][0]
def second_tens(p):
return p[0][1]
def sight_rhyme (p):
"""Return whether the two numbers in a numpair do not rhyme.

>>> sight_rhyme (numpair (13, 53))

True
>>> sight_rhyme (numpair (0, 30))
True
>>> sight_rhyme (numpair (53, 23))
False
if (first_tens(p) == 1)+(second_tens(p) == 1) >= 1:
return first_tens(p) != second_tens (p)
elif ones(p) == 0:
if first_tens(p) == 0:
return second_tens(p) != 0
else:
return second_tens(p) == 0
else:

return False

