Name Early Key

EE42/100 Midterm 2

1.51

NO CALCULATORS, CELL PHONES, or other electronics allowed. Show your work, and put final answers in the boxes provided. Use proper units in all answers.

1. [5] Express the following power ratios in dB

P/Pref	P/Pref [dB]
20	13
50	17
2x10 ⁻¹⁰	-97
1/4	-6
2.5x10 ⁸	74

SID

2. [5] Express the following voltage ratios in dB

V/Vref	V/Vref [dB]	
Sqrt(2)	3	
1/2	-6	
0.04	-2.8	
1	0	
2x10 ⁻³	-24	

lpt, no partial credit no units necessary (Edgontop) NO credit for answers that include log of anything.

210 = 2.6+2.20

- 3. [8] You measure an AC voltage across a $1k\Omega$ resistor. The digital voltmeter that you use measures in RMS (like all voltmeters), and reports that the voltage is $1 \vee U = U + S$
 - a. What is the zero-to-peak voltage?

$$V = \sqrt{2} IV = 1.4$$

- b. What is the peak-to-peak voltage
- c. What is the max power dissipated in the resistor?

 $(1,4)^{2}$; $2v^{2}$ 1k; 1k

d. What is the average power dissipated in the resistor?

-1 right formula, wrong calc - | missing with -2 all missing units

VZ OK VO.P=1.4V

Name

4. [10] For the circuit below, calculate the steady state values for the current in the two inductors, the voltage across the capacitor, the energy stored in L₁, and the energy stored in C₂.

- 5. [10] Two capacitors, each 2μ F, are charged in parallel from a single AA battery with a voltage of 1.5V, and then discharged in series into a $1k\Omega$ load. The battery has a source resistance of 1Ω .
 - a. What is the equivalent capacitance seen by the battery during charging?
 - b. What is the time constant during charging?
 - c. What is the equivalent capacitance of the series combination driving the load?
 - d. What is the time constant during discharging?
 - e. How long does it take for the output voltage to droop 5% after the phi2 switches are closed?

$$\frac{C_{charge}}{\tau_{charge}} + \frac{4}{M} + \frac{1}{M} + \frac{1}{M$$

t5%= 50ms

-1 right formula wrong calc

6. [10] In the RC circuit below assume V_{in} is a voltage step from 0 to 10V at t=0. If R=1 and C=1nF, sketch the response of the circuit on the three different time scales provided.

Name_

SID

$$L = 10^{4} \quad 10^{7} = \frac{1}{\sqrt{10^{4} c}} \quad 10^{4} = \frac{1}{10^{4} c} \quad c = 10^{16}$$

9. [18 total] You want to build an AM radio with an LC tank at a resonant frequency $\phi^{\uparrow}10^{7}$ ad/sec. Your inductor is 100uH and has a series resistance of 20 Ω .

- a. [2] How big should your capacitor be?
- b. [6] Sketch the magnitude of the inductor impedance (including series resistor) and capacitor impedance on the axes below. Label each axis!
- c. [2] Assuming an ideal capacitor, what will the Q of your LC tank be?

$$\frac{\omega_{pL}}{R} = \frac{10^{+}10^{+}}{20} = \frac{1000}{20} = 50$$

- d. [2] What is the magnitude of the tank impedance at 1 rad/sec?
- e. [2] What is the magnitude of the tank impedance at 10⁶ rad/sec?

C=100pF

Q= 50

Z(j10⁶)= / 0 €

Z(j1)= 20

f. [2] What is the magnitude of the tank impedance at the resonant frequency?

g. [2] What is the magnitude of the tank impedance at 10⁹ rad/sec?

Z(j10⁹)= / 🔿

Z(jω_p)= 50K

datter

-1 total it either or both we missing 2 pts each for Resistive/inductive, capacitive pots { 1 pt shape