
MIDTERM 2, BORDEL SOLUTIONS PART I

1. Problem 1 - Linear Charge Distribution

1.1. a. There can be no electric field component at C along the y-axis, as the system is
left invariant upon inversion across the x-axis. There is also no component in or out of the
page, as the system is confined to the plane of the page. Therefore, the field at C must be
entirely along the x-direction. As the charge distribution above C is entirely positive, the
electric field must be pointing down the x-direction, away from those charges. Note that
this argument holds for both subsystems as well.

To calculate the electric field at C, we will calculate electric fields of the semi-circle and
the rod separately and combine the expressions by the principle of superposition.

1.2. b. Because the electric field is entirely along the x-direction:

~E =
(
~E · x̂

)
x̂(1)

Calculating the magnitude at C due to the semi-circle charge:

~E · x̂ =

∫
SC

keλdl

r2 (l)
r̂ (l) · x̂

=

∫ π/2

−π/2

keλRdθ

R2
cos (θ)

=
keλ

R

∫ π/2

−π/2
dθ cos (θ)

(2)

where I have directed θ = 0 along −x̂ .
Evaluating the integral:

~E · x̂ =
keλ

R
[sin (θ)]

π/2
−π/2 =

2keλ

R
(3)

and so

~E =
2keλ

R
x̂(4)

1
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1.3. c. Again, calculating the magnitude of the electric field at C due to the line charge:

~E · x̂ =

∫ L

−L

keλdl

r2 (l)
r̂ (l) · x̂

=

∫ L

−L

keλdl

R2 + l2
cos (θ)

(5)

defining θ as before. We can evaluate the cosine in terms of other quantities:

~E · x̂ =

∫ L

−L

keλdl

R2 + l2
R√

R2 + l2

= keλR

∫ L

−L

dl

(R2 + l2)3/2

(6)

Evaluating the integral using the Reminder:

~E · x̂ = keλR

[
l

R2
√
R2 + l2

]L
−L

=
2keλ

R

L√
R2 + L2

(7)

and

~E =
2keλ

R

L√
R2 + L2

x̂(8)

2. Problem 2 - Surface Charge Distribution

2.1. a. For each region we apply Gauss’s law using a finite (length L) cylindrical surface,
as the electric field is cylindrical radial.

(9)

∮
~E · d ~A =

Qenclosed
ε0

Using a cylinder of radius r < R1, we have the result

(10) E2πrL =
0

ε0
→ ~E = ~0 for r < R1

Using a cylinder of radius R1 < r < R2, we have the result

(11) E2πrL =
βL

ε0
→ ~E =

β

2πε0r
r̂ for R1 < r < R2

For a cylinder of radius r > R2, we have the result
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(12) E2πrL =
βL− βL

ε0
= 0→ ~E = ~0 for r > R2

2.2. b. We will set the potential at infinity to zero. Integrating the null electric field to
any point outside of both cylinders shows us that the potential everywhere outside the
cylinder is zero.

(13) VIII (r) = 0

The electric field inside the outer cylinder and outside the inner cylinder is non-zero, so
the potential is changing:

VII (r) = 0−
∫ r

R2

~E · d~x′

= −
∫ r

R2

βdr′

2πε0r′

=
β

2πε0
ln

(
R2

r

)(14)

The electric field inside both cylinders is zero, and so the potential in this region is
constant:

(15) VI (r) = VII (R1) =
β

2πε0
ln

(
R2

R1

)
2.3. c. Plot of E (r) (I: x < 1, II: 1 < x < 2, III: x > 2)
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Plot of V (r) (I: x < 1, II: 1 < x < 2, III: x > 2)
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2.4. d. For any subsection of the finite charged cylinders of length L, the total charge on

each shell is ±Q = ±βL. The potential difference across the shells is ∆V = β
2πε0

ln
(
R2
R1

)
.

Using our formula for capacitance:

C =
Q

∆V
=

2πε0L

ln
(
R2
R1

)(16)

We see that the capacitance of this subsection is proportional to its length. The capac-
itance per unit length of this capacitor is

c =
C

L
=

2πε0

ln
(
R2
R1

)(17)

3. Problem 3 - Charged Spheres in Equilibrium

3.1. a. By Gauss’s law, the electric field outside of an isolated spherical conductor of radius
Ra and charge Qa is the same as that of a point charge:

~E =
Qa

4πε0r2
r̂(18)

and so, in this region, the potential is that of a point charge as well:

V =
Qa

4πε0r
(19)
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at the surface:

Vs =
Qa

4πε0Ra
(20)

and at some radius r far away:

Vfar =
Qa

4πε0r
(21)

3.2. b. Because the spheres are separated by a distance much greater than their radii, the
potential of one is fairly uniform in the region of the other. Therefore,

V1 (Q1, Q2) =
Q1

4πε0R1
+

Q2

4πε0d

V2 (Q1, Q2) =
Q2

4πε0R2
+

Q1

4πε0d

(22)

3.3. c. Using the formula for potential energy of a charge distribution:

U =
1

2

∑
i

QiV (xi)(23)

we have:

U =
1

2
Q1V1 (Q1, Q2) +

1

2
Q2V2 (Q1, Q2)

=
Q2

1

8πε0R1
+
Q1Q2

4πε0d
+

Q2
2

8πε0R2

(24)

3.4. d. Substituting in x:

U (x) =
(
x2
) Q2

0

8πε0R1
+
(
x− x2

) Q2
0

4πε0d
+
(
x2 − 2x+ 1

) Q2
0

8πε0R2

(25)

Setting the first derivative to zero to find a potential minimum:

0 = (2x)
Q2

0

8πε0R1
+ (1− 2x)

Q2
0

4πε0d
+ (2x− 2)

Q2
0

8πε0R2

−1

d
+

1

R2
=

x

R1
− 2x

d
+

x

R2

x =
1
R2
− 1

d(
1
R1

+ 1
R2
− 2

d

)
(26)

Assuming d >> R1, R2 we have:
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x ≈ 1(
1 + R2

R1

)
(27)

This could also have been obtained by only considering the first and third terms in
equation (25).






