QUIZ 3 SOLUTION - Phiteman

Problem 1 (20 pts)

A compressor has two inlets and one outlet:

Input 1 takes in saturated liquid water at $T_1=70$ °C and $\dot{m}_1=5$ kg/s Input 2 takes in saturated water vapor at $T_2=70$ °C and $\dot{m}_2=20$ kg/s. The outlet is at $p_3 = 800 \text{ kPa}$.

The compressor requires $\dot{W} = 60 \text{ MW} (60 \times 10^6 \text{ W}) \text{ of work input.}$ The compressor is uninsulated, and there is a heat loss of 10 MW. Changes in kinetic and potential energy are negligible.

(a) Obtain a symbolic equation for the enthalpy at the exit. Do not plug in any numbers.

(b) What is the numerical value of temperature of the exiting stream, T_3 ?

MASS:
$$\frac{d}{dt}M_{cv} = \dot{m}_1 + \dot{m}_2 - \dot{m}_3 \Rightarrow \dot{m}_3 = \dot{m}_1 + \dot{m}_2$$

(a) Need
$$h_1$$
: $h_5(70^{\circ}C) = 293.1 \text{ kJ/kg} \rightarrow m_1 h_1 = 1,465.5 \text{ kW}$

$$h_2 : h_3(70^{\circ}C) = 2626.1 : \rightarrow m_2 h_2 = 52,522 \text{ kW}$$

$$\Rightarrow h_3 = 4159.5 \text{ kJ}$$

$$and p_3 = 800 \text{ kPa} = 0.8 \text{ MPa}.$$

$$S.H.V. Table \rightarrow T_3 \approx 800^{\circ}C \text{ (h=4157 kJ)}$$

Problem 2 (20 pts)

A thin, flexible sack is connected by a valve to a reservoir of saturated water vapor at 120 °C. Initially the sack is completely empty. The valve is opened slightly and steam begins to fill the sack. After some time the sack volume has expanded to 0.50 m³. Weighing the sack reveals that its mass has increased by 0.23 kg. The pressure outside the sack is p_∞=100 kPa throughout this process. There was also a heat transfer Q₁₂ (value unknown) between sack and surroundings during this process.

(b) What was the heat transfer Q_{12} in kJ? Clearly specify the magnitude and direction. empty

$$U = \frac{\sqrt{2}}{m_2} = \frac{0.5 \, \text{m}^3}{0.23 \, \text{kg}} = 2.17 \, \frac{\text{m}^3}{\text{kg}}.$$

Problem 3 (20 pts)

(Background: devices like this are being considered to generate electricity from hot car exhaust.)

Hot air enters a pipe at T_1 , P_1 , and exits at T_2 , P_2 . A heat engine is mounted to the side of the pipe, such that there is a steady heat transfer from the pipe to the heat engine. The heat engine generates electrical power \dot{W}_e . The heat engine also rejects heat to the surroundings at a rate \dot{Q}_C

Given:

 $T_1, P_1, T_2, P_2,$

 \dot{W}_e , \dot{Q}_C ,

Air as an ideal gas, with constant C_p, C_v, and R

Derive an expression for the mass flow rate of air, in. You may ignore kinetic energy effects.

MASS:

d Mar = m, -m,

=> m,= m2

5.5

ENERGY:

de for = - Oc - we + m, h, - m2 h2 5.5.

m (h, -hz) = We + Qe

$$\mathring{m} = \frac{\mathring{w}_e + \mathring{Q}_c}{C_p(T_1 - T_2)}$$

Ideal gas, const. G: Sh = G ST (...more space for Problem 3)

E. C.) Now add KE terms to m

0 = - Oc- @we + m(Ch, + \(\frac{1}{2}\) - (h_2 + \(\frac{1}{2}\))

me We + Qc

(T1-12) +1 (V2-V22)

* Which is faster, V, or Vz?

Mass: m= Av

(Extra Credit: 5 pts) If we did account for changes in kinetic energy, qualitatively how would the work output change? Other than \dot{W}_e and KE, assume all quantities given above remain constant. You must justify your answer.

- (i) Accounting for KE effects would cause W_e to increase.
- (ii) Accounting for KE effects would cause \dot{W}_e to stay the same.
- (iii) Accounting for KE effects would cause \dot{W}_e to decrease

$$W_{e} = -\hat{Q}_{c} + \hat{m} \left(p \left(T_{1} - \overline{I}_{2} \right) + \hat{m} \left(\frac{\hat{m}}{A_{c}} \frac{RT_{i}}{P_{i}} \right)^{2} - \left(\frac{\hat{m}}{A_{c}} R \frac{T_{2}}{P_{2}} \right)^{2} \right)$$

If $\frac{T_1}{P_1} > \frac{T_2}{P_2}$; we incr. Weed more info to decode!

The true of the decode!

Realistically, Ap typically a few %, whereas Tang 7 10%

SO ST effect most likely to dominate. Expect Wo increase (most likely)