Physics 7C Section 1 Spring 2006 Midterm 2. April 3, 2006 Prof. Marco Battaglia

N.T.	 Transmitted to	CID.	
Name:		SID:	
F	The state of the s		

Choose four out of the five problems proposed, the test duration is 120 minutes.

- 1. A collimated beam of 5.9 keV X-ray photons emitted by a 55 Fe radioactive source is sent on the face of a diamond crystal. Assume that the C atoms are arranged in the diamond crystal according to a cubic array, with an inter-atom spacing of 1.06 Angstrom.
- Find the values of the angle between the incoming and the diffracted photon beam that give the first three maxima in the measured reflected intensity,
- ii) Describe the result of the same experiment performed using a 400 nm laser beam.
- 2. Show that $\sum_i \Delta x_i^2 c^2 \Delta t^2 = 0$, where the index i runs over the three space coordinates, is invariant under transformations of the kind $x_i' = \gamma(x_i v_i t)$, $x_i = \gamma(x_i' + v_i t')$, $t' \neq t$ where (x, t) and (x', t') denote two inertial frames moving at relative speed v. Use this invariance to derive the expression of γ .
- 3. A neutral kaon K^0 , with mass $m_{K^0}=494~{\rm MeV}/c^2$ and energy $E_{K^0}=10000~{\rm MeV}$, decays into two neutral pions π^0 , each with mass $m_{\pi^0}=140~{\rm MeV}/c^2$ according to the process $K^0\to\pi^0\pi^0$:
- i) Determine the opening angle of the two neutral pions $\theta_{\pi\pi}$ measured in the lab frame and the energy of each of the pions both in the K^0 rest frame and in the lab frame;
- ii) An experiment produces a flux of monoergetic K^0 particles, knowing that the lifetime τ_0 of a K^0 meson at rest is 0.9×10^{-10} s and that the kaon flux is reduced according to the exponential law $I(t) = I(0)e^{-t/\tau}$, find the fraction I(t)/I(0) of the original flux that will be measured, in the lab, 1 meter away from the kaon production point.
- 4. Very energetic protons ($m_p = 938 \text{ MeV}/c^2$) collide with cosmic microwave background (CMB) photons where they lose energy by inducing the reaction $p\gamma \to \Delta \to p\pi^0$. This phenomenon suggests an absolute upper limit for the energy of cosmic ray protons, known as the GZK effect. Find the proton energy threshold E_p for this reaction, knowing that the mass of the Δ particle is 1232 MeV/ c^2 and that the typical energy of a CMB photon is 2.35×10^{-10} MeV (assume head-on $p\gamma$ collisions).
- 5. Two photons of equal energy E_{γ} collide to produce an electron-positron pair $\gamma\gamma \to e^+e^-$ ($m_e=0.511~{\rm MeV/}c^2$):
- i) Determine the minimum energy E_γ needed for this process to occur when the angle between the two photons is π/2 and π;
- ii) a magnetic field B=3 Tesla is established, with B parallel to the direction of the photons which are colliding head-on, determine the largest radius of curvature of the electrons emitted when E_{γ} =2000 MeV.