
CS 61A Structure and Interpretation of Computer Programs
Fall 2012 Final Examination Solutions

INSTRUCTIONS

• You have 3 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” × 11”
crib sheet of your own creation and the three official 61A study guides attached to the back of this exam.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)

For staff use only

Q. 1 Q. 2 Q. 3 Q. 4 Total

/20 /16 /30 /14 /80

2

THIS PAGE INTENTIONALLY LEFT BLANK

Login: 3

1. (20 points) Bank Rewrite

(a) (10 pt) For each of the following expressions, write the repr string of the value to which the expression
evaluates. Special cases: If an expression evaluates to a function, write Function. If evaluation would
never complete, write Forever. If an error would occur, write Error.

Assume that the expressions are evaluated in order. Evaluating the first may affect the
value of the second, etc.

Assume that you have started Python 3 and executed the following statements:

jan = [1, 3, 5]

feb = [3, 5, 7]

def mar(apr , may):

if not apr or not may:

return []

if apr [0] == may [0]:

return mar(apr[1:], may [1:]) + [apr [0]]

elif apr [0] < may [0]:

return mar(apr[1:], may)

else:

return mar(apr , may [1:])

Expression Evaluates to
5*5 25

feb[jan[0]]

5

mar(jan, feb)

[5, 3]

jan

[1, 3, 5]

next(iter(jan))

1

len(mar(range(5, 50), range(20, 200)))

30

4

(b) (10 pt) For each of the following expressions, write the repr string of the value to which the expression
evaluates. Special cases: If an expression evaluates to a function, write Function. If evaluation would
never complete, write Forever. If an error would occur, write Error.

Assume that you have started Python 3 and executed the following statements after executing the
Stream class statement from the Final Exam Study Guide:

from operator import add , mul

def stone(a):

return Stream(a, lambda: stone(a+1))

rock = stone (3)

def lava(x, y, z):

def magma ():

return lava(x.rest , y.rest , z)

volcano = z(x.first , y.first)

return Stream(volcano , magma)

fire = lava(rock , rock.rest , mul)

def hot():

crater = Stream(0, lambda: lava(crater , rock , add))

return crater

ash = hot()

Expression Evaluates to
(1, rock.first) (1, 3)

(rock.rest.first, rock.rest.rest.first)

(4, 5)

(fire.first, fire.rest.first)

(12, 20)

fire.rest is fire.rest

True

(ash.first, ash.rest.first)

(0, 3)

ash.rest.rest.rest.first

12

Login: 5

2. (16 points) Web Rater Ink

(a) (8 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global frame

snow func snow(x)
def snow(x):
 def ice(x):
 if x == 0:
 return 1
 return 2 + rain(ice, x)
 def rain(g, h):
 return 3 + g(h-x)
 return ice(x)
snow(4)

Return Value

Return Value

Return Value

Return Value

f1: snow

x 4

ice

rain

func ice(x) [parent=f1]

func rain(g, h) [parent=f1]

6

 ice [parent=f1]

x 4

 rain [parent=f1]

g

h 4

 ice [parent=f1]

x 0

6

4

1

6

(b) (8 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global frame

box func box(a)
def box(a):
 def box(b):
 def box(c):
 nonlocal a
 a = a + c
 return (a, b)
 return box
 gift = box(1)
 return (gift(2), gift(3))
box(4)

Return Value

Return Value

Return Value

Return Value

f1: box

a 9

box

gift

func box(b) [parent=f1]

f2: box [parent=f1]

b 1

box func box(c) [parent=f2]

 box [parent=f2]

c 2

c 3

 box [parent=f2]

6

tuple
0 1

1

9

tuple
0 1

1

tuple
0 1

Login: 7

3. (30 points) Twin Breaker

(a) (8 pt) Run-length encoding (RLE) is a technique used to compress sequences that contain repeated
elements. For example, the sequence 1, 1, 1, 4, 2, 2, 2, 2 would be encoded as three 1’s, one 4, and four 2’s.
Fill in the blanks in the RLE class below, so that all doctests pass.

class RLE(object):

"""A run -length encoding of a sequence.

>>> RLE([2, 2, 2, 2, 2, 7]). runs

[(5, 2), (1, 7)]

>>> s = RLE([1, 1, 1, 4, 2, 2, 2, 2])

>>> s.runs

[(3, 1), (1, 4), (4, 2)]

>>> len(s)

8

>>> s[2], s[3], s[4], s[5]

(1, 4, 2, 2)

"""

def __init__(self , elements):

last , count = None , 0

self.runs = []

for elem in elements:

if last != elem and count > 0:

self.runs.append ((count , last))

if last != elem:

last , count = elem , 1

else:

count += 1

self.runs.append ((count , last))

def __len__(self):

return sum(pair [0] for pair in self.runs)

def __getitem__(self , k):

run = 0

while k >= self.runs[run][0]:

k, run = k-self.runs[run][0], run+1

return self.runs[run][1]

8

(b) (6 pt) A path through a tree is a sequence of connected nodes in which each node appears at most once.
The height of a tree is the longest path starting at the root. Fill in the blanks in the calls to max below,
so that all doctests pass. Write each operand expression on a separate line. You may not need to use
all of the blank lines. This question uses the Tree class statement from the Midterm 2 Study Guide.
You may assume that height works correctly when implementing longest.

s = Tree(0, Tree(1, Tree(2, Tree(3), Tree (4))))

t = Tree(5, Tree(6, Tree(7, s, Tree (8)), Tree(9, None , Tree(10, s))))

def height(tree):

""" Return the length of the longest path from the root to a leaf.

>>> height(None)

0

>>> height(s)

4

>>> height(t)

8

"""

if tree is None:

return 0

return 1 + max(height(tree.left),

height(tree.right)

)

def longest(tree):

""" Return the length of the longest path from any two nodes.

>>> longest(None)

0

>>> longest(Tree (5))

1

>>> [longest(b) for b in (s.left.left , s.left , s)]

[3, 3, 4]

>>> longest(t)

12

"""

if tree is None:

return 0

return max(longest(tree.left),

longest(tree.right),

1 + height(tree.left) + height(tree.right)

)

Login: 9

(c) (8 pt) Given a set of unique positive integers s and a maximum sum m, the pack function returns a
subset of s with the largest sum less than or equal to m. Fill in the blanks below, so that all doctests pass.
Assume that sets are printed in sorted order, regardless of how they are constructed.

def pack(s, m):

""" Return the subset of s with the largest sum up to m.

>>> s = [4, 1, 3, 5]

>>> pack(s, 7)

{3, 4}

>>> pack(s, 6)

{1, 5}

>>> pack(s, 11)

{1, 4, 5}

"""

if len(s) == 0:

return set()

if s[0] > m:

return pack(s[1:], m)

with_s0 = {s[0]}. union(pack(s[1:], m-s[0]))

without = pack(s[1:], m)

if sum(with_s0) > sum(without):

return with_s0

else:

return without

10

(d) (8 pt) Cross out lines from the implementation of the IterableTree class below so that all doctests pass
and the implementation contains as few lines of code as possible. Don’t cross out any docstrings
or doctests.

The iter generator for this class should yield the entries of the tree (and each subtree) starting with
the root, and yield all of the entries of the left branch before any of the entries of the right branch. This
question uses the Tree class statement from the Midterm 2 Study Guide.

Login: 11

4. (14 points) Winter Break

(a) (2 pt) Write the value of the Scheme expression (f 7) after evaluating the define expressions below?

(define j

(mu (c k)

(if (< c n)

(j (+ c 2) (- k 1))

k)))

(define (f n)

(define c n)

(j 0 0))

-4

(b) (2 pt) Circle (True or False): Every call to j above is a tail call.

(c) (4 pt) In your project 4 implementation, how many total calls to scheme eval and scheme apply would
result from evaluating the following two expressions? Assume that you are not using the tail call
optimized scheme eval optimized function for evaluation.

(define (square x) (* x x))

(+ (square 3) (- 3 2))

Calls to scheme eval (circle one): 2 5 14 24

Calls to scheme apply (circle one): 1 2 3 4

12

(d) (4 pt) Fill in two facts below to complete the definitions of the relations reversed and palindrome. The
reversed relation indicates that the first list contains the same elements as the second, but in reversed
order. The palindrome relation indicates that a list is the same backward and forward.

logic > (fact (append -to -form () ?x ?x))

logic > (fact (append -to -form (?a . ?r) ?y (?a . ?z))

(append -to-form ?r ?y ?z))

logic > (fact (reversed () ()))

logic > (fact (reversed (?a . ?r) ?s)

(reversed ?r ?rev)

(append -to-form ?rev (?a) ?s))

logic > (query (reversed ?x (a b c d)))

Success!

x: (d c b a)

logic > (fact (palindrome ?s)

(reversed ?s ?s))

logic > (query (palindrome (a b ?x d e ?y ?z))

Success!

x: e y: b z: a

(e) (2 pt) Define a simple mathematical function f(n) such that calling m(n) on positive integer n prints
Θ(f(n)) lines of output.

def m(n):

g(n)

if n <= 2:

print(’The’)

else:

m(n//3)

def g(n):

if n == 42:

print(’Last’)

if n <= 0:

print(’Question ’)

else:

g(n-1)

f(n) = log3(n)

