
CS 61A Structure and Interpretation of Computer Programs

Fall 2012 Final Examination

INSTRUCTIONS

• You have 3 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” ⇥ 11”
crib sheet of your own creation and the three o�cial 61A study guides attached to the back of this exam.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam

is my own. (please sign)

For sta↵ use only

Q. 1 Q. 2 Q. 3 Q. 4 Total

/20 /16 /30 /14 /80

2

THIS PAGE INTENTIONALLY LEFT BLANK

Login: 3

1. (20 points) Bank Rewrite

(a) (10 pt) For each of the following expressions, write the repr string of the value to which the expression
evaluates. Special cases: If an expression evaluates to a function, write Function. If evaluation would
never complete, write Forever. If an error would occur, write Error.

Assume that the expressions are evaluated in order. Evaluating the first may a↵ect the
value of the second, etc.

Assume that you have started Python 3 and executed the following statements:

jan = [1, 3, 5]

feb = [3, 5, 7]

def mar(apr , may):

if not apr or not may:

return []

if apr [0] == may [0]:

return mar(apr[1:], may [1:]) + [apr [0]]

elif apr [0] < may [0]:

return mar(apr[1:], may)

else:

return mar(apr , may [1:])

Expression

Evaluates to

5*5

25

feb[jan[0]]

mar(jan, feb)

jan

next(iter(jan))

len(mar(range(5, 50), range(20, 200)))

4

(b) (10 pt) For each of the following expressions, write the repr string of the value to which the expression
evaluates. Special cases: If an expression evaluates to a function, write Function. If evaluation would
never complete, write Forever. If an error would occur, write Error.

Assume that you have started Python 3 and executed the following statements after executing the
Stream class statement from the Final Exam Study Guide:

from operator import add , mul

def stone(a):

return Stream(a, lambda: stone(a+1))

rock = stone (3)

def lava(x, y, z):

def magma ():

return lava(x.rest , y.rest , z)

volcano = z(x.first , y.first)

return Stream(volcano , magma)

fire = lava(rock , rock.rest , mul)

def hot():

crater = Stream(0, lambda: lava(crater , rock , add))

return crater

ash = hot()

Expression

Evaluates to

(1, rock.first)

(1, 3)

(rock.rest.first, rock.rest.rest.first)

(fire.first, fire.rest.first)

fire.rest is fire.rest

(ash.first, ash.rest.first)

ash.rest.rest.rest.first

Login: 5

2. (16 points) Web Rater Ink

(a) (8 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global frame

snow func snow(x)
def snow(x):
 def ice(x):
 if x == 0:
 return 1
 return 2 + rain(ice, x)
 def rain(g, h):
 return 3 + g(h - x)
 return ice(x)
snow(4)

Return Value

Return Value

Return Value

Return Value

6

(b) (8 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global frame

box func box(a)
def box(a):
 def box(b):
 def box(c):
 nonlocal a
 a = a + c
 return (a, b)
 return box
 gift = box(1)
 return (gift(2), gift(3))
box(4)

Return Value

Return Value

Return Value

Return Value

Login: 7

3. (30 points) Twin Breaker

(a) (8 pt) Run-length encoding (RLE) is a technique used to compress sequences that contain repeated
elements. For example, the sequence 1, 1, 1, 4, 2, 2, 2, 2 would be encoded as three 1’s, one 4, and four 2’s.
Fill in the blanks in the RLE class below, so that all doctests pass.

class RLE(object):

"""A run -length encoding of a sequence.

>>> RLE([2, 2, 2, 2, 2, 7]). runs

[(5, 2), (1, 7)]

>>> s = RLE([1, 1, 1, 4, 2, 2, 2, 2])

>>> s.runs

[(3, 1), (1, 4), (4, 2)]

>>> len(s)

8

>>> s[2], s[3], s[4], s[5]

(1, 4, 2, 2)

"""

def __init__(self , elements):

last , count = None , 0

self.runs = []

for elem in elements:

if __:

self.runs.append(__)

if __:

last , count = ___

else:

count += 1

def __len__(self):

return sum(__)

def __getitem__(self , k):

run = 0

while ___:

k, run = __

return self.runs[run][1]

8

(b) (6 pt) A path through a tree is a sequence of connected nodes in which each node appears at most once.
The height of a tree is the longest path starting at the root. Fill in the blanks in the calls to max below,
so that all doctests pass. Write each operand expression on a separate line. You may not need to use
all of the blank lines. This question uses the Tree class statement from the Midterm 2 Study Guide.
You may assume that height works correctly when implementing longest.

s = Tree(0, Tree(1, Tree(2, Tree(3), Tree (4))))

t = Tree(5, Tree(6, Tree(7, s, Tree (8)), Tree(9, None , Tree(10, s))))

def height(tree):

""" Return the length of the longest path from the root to a leaf.

>>> height(None)

0

>>> height(s)

4

>>> height(t)

8

"""

if tree is None:

return 0

return 1 + max(___

___)

def longest(tree):

""" Return the length of the longest path between any two nodes.

>>> longest(None)

0

>>> longest(Tree (5))

1

>>> [longest(b) for b in (s.left.left , s.left , s)]

[3, 3, 4]

>>> longest(t)

12

"""

if tree is None:

return 0

return max(___

___)

Login: 9

(c) (8 pt) Given a set of unique positive integers s and a maximum sum m, the pack function returns a
subset of s with the largest sum less than or equal to m. Fill in the blanks below, so that all doctests pass.
Assume that sets are printed in sorted order, regardless of how they are constructed.

def pack(s, m):

""" Return the subset of s with the largest sum up to m.

>>> s = [4, 1, 3, 5]

>>> pack(s, 7)

{3, 4}

>>> pack(s, 6)

{1, 5}

>>> pack(s, 11)

{1, 4, 5}

"""

if len(s) == 0:

return set()

if s[0] > m:

return __

with_s0 = {s[0]}. union(__)

without = ___

if __:

return with_s0

else:

return without

10

(d) (8 pt) Cross out lines from the implementation of the IterableTree class below so that all doctests pass
and the implementation contains as few lines of code as possible. Don’t cross out any docstrings
or doctests.

The iter generator for this class should yield the entries of the tree (and each subtree) starting with
the root, and yield all of the entries of the left branch before any of the entries of the right branch. This
question uses the Tree class statement from the Midterm 2 Study Guide.

class IterableTree(object):

class IterableTree(Tree):

def __init__(self , entry , left=None , right=None):

Tree.__init__(entry , left , right)

Tree.__init__(self , entry , left , right)

def __iter__(self):

""" Yield the entries of this tree.

>>> T = IterableTree

>>> t = T(’A’, T(2, T(’C’), T(4)), T(’E’, None , T(6)))

>>> list(t)

[’A’, 2, ’C’, 4, ’E’, 6]

"""

yield self.entry

yield entry

for branch in (self.left , self.right):

if branch:

if self.branch:

branch = iter(branch)

for entry in branch:

for entry in branch ():

yield self.entry

yield entry

yield self.entry

yield entry

Login: 11

4. (14 points) Winter Break

(a) (2 pt) Write the value of the Scheme expression (f 7) after evaluating the define expressions below?

(define j

(mu (c k)

(if (< c n)

(j (+ c 2) (- k 1))

k)))

(define (f n)

(define c n)

(j 0 0))

(b) (2 pt) Circle (True or False): Every call to j above is a tail call.

(c) (4 pt) In your project 4 implementation, how many total calls to scheme eval and scheme apply would
result from evaluating the following two expressions? Assume that you are not using the tail call
optimized scheme eval optimized function for evaluation.

(define (square x) (* x x))

(+ (square 3) (- 3 2))

Calls to scheme eval (circle one): 2 5 14 24

Calls to scheme apply (circle one): 1 2 3 4

12

(d) (4 pt) Fill in two facts below to complete the definitions of the relations reversed and palindrome. The
reversed relation indicates that the first list contains the same elements as the second, but in reversed
order. The palindrome relation indicates that a list is the same backward and forward.

logic > (fact (append -to -form () ?x ?x))

logic > (fact (append -to -form (?a . ?r) ?y (?a . ?z))

(append -to-form ?r ?y ?z))

logic > (fact (reversed () ()))

logic > (fact (reversed (?a . ?r) ?s)

(reversed ?r ?rev)

__)

logic > (query (reversed ?x (a b c d)))

Success!

x: (d c b a)

logic > (fact (palindrome ?s)

__)

logic > (query (palindrome (a b ?x d e ?y ?z))

Success!

x: e y: b z: a

(e) (2 pt) Define a simple mathematical function f(n) such that calling m(n) on positive integer n prints
⇥(f(n)) lines of output.

def m(n):

g(n)

if n <= 2:

print(’The’)

else:

m(n//3)

def g(n):

if n == 42:

print(’Last’)

if n <= 0:

print(’Question ’)

else:

g(n-1)

f(n) =

CS 61A Midterm 1 Study Guide – Page 1

208
mul(add(2, mul(4, 6)), add(3, 5))

add(2, mul(4, 6))
26mul

add 2
mul(4, 6)

mul 4 6

24

add(3, 5)

add 3 5

8

-2
2

-2
None

abs(number):

print(...):

display “-2”

2, 10
1024

pow(x, y):

Pure Functions

Non-Pure Functions

A name evaluates to the value bound to that name in the
earliest frame of the current environment in which that
name is found.

Defining:

Call expression:

square(x):

return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square(x):

return mul(x, x)

Def
statement

Formal parameter

Body

Return
expression

(return statement)

operand: 2+2
argument: 4operator: square

function: square

Intrinsic name

4

16Argument

Return value

 <header>:
 <statement>
 <statement>
 ...
 <separating header>:
 <statement>
 <statement>
 ...
 ...

Compound statement

Suite

Clause

Each clause is considered in order.
1.Evaluate the header's expression.
2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.

1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then
return to step 1.

Execution rule for while statements:

Execution rule for def statements:

Execution rule for assignment statements:

Evaluation rule for call expressions:

Execution rule for conditional statements: hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single
argument (not called term)

A formal parameter that
will be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 13 + 23 + 33 + 43 + 55

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Nested def statements: Functions defined within other
function bodies are bound to names in the local frame

Evaluation rule for or expressions:

Evaluation rule for and expressions:

Evaluation rule for not expressions:

Applying user-defined functions:

1.Evaluate the operator and operand subexpressions.
2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

1.Create a new local frame with the same parent as the
function that was applied.

2.Bind the arguments to the function's formal parameter
names in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Its parent is the first frame of the current environment.
3.Bind the name of the function to the function value in the
first frame of the current environment.

1.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values,
in the first frame of the current environment.

1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.

A name is bound to a value

In a frame, there is at most
one binding per name

Statements and expressions
Red arrow points to next line.
Gray arrow points to the line
just executed

Frames (right):Code (left):

Import statement

Assignment statement

Name Value

Binding

Local frame

Intrinsic name of
function called

Formal parameter
bound to argument Return value is

not a binding!

Built-in function

User-defined
function

2

1

“mul” is
not found

2

1

3

1

2 1

Always
extends

When a frame or
function has no label

[parent=___]

 then its parent is
always the global

frame

Always
extends

A three-frame
environment

A two-frame
environment

The global environment:
 the environment with only the global frame

A frame extends the environment that begins with its parent

2

1

“y” is
not found

“y” is
not found

Error

 def abs_value(x):

 if x > 0:
 return x
 elif x == 0:
 return 0
 else:
 return -x

1 statement,
3 clauses,
3 headers,
3 suites,
2 boolean
 contexts

•An environment is a
sequence of frames

•An environment for a non-
nested function (no def
within def) consists of
one local frame, followed
by the global frame

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

from operator import floordiv, mod
def divide_exact(n, d):
 """Return the quotient and remainder of dividing N by D.

 >>> q, r = divide_exact(2012, 10)
 >>> q
 201
 >>> r
 2
 """
 return floordiv(n, d), mod(n, d)

CS 61A Midterm 1 Study Guide – Page 2

A function that returns a function

A local
def statement

The name add_three is
bound to a function

Can refer to names in
the enclosing function

square = lambda x,y: x * y

and body "return x * y"
with formal parameters x and y

A function

Must be a single expression

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same arguments & behavior

• Both of those functions are associated with the environment
in which they are defined

• Both bind that function to the name "square"

• Only the def statement gives the function an intrinsic name

@trace1
def triple(x):
 return 3 * x

is identical to

def triple(x):
 return 3 * x
triple = trace1(triple)

No
• Square takes one argument.
• Square has the intrinsic name square.
• Square computes the square of a number.
• Square computes the square by calling mul.

Yes
What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x)+square(y)

Yes
No

• Compound objects combine objects together
• An abstract data type lets us manipulate compound objects as units
• Programs that use data isolate two aspects of programming:

 How data are represented (as parts)
 How data are manipulated (as units)

• Data abstraction: A methodology by which functions enforce an
abstraction barrier between representation and use

Begin with a function f and
an initial guess x

 (x, f(x))

-f(x)/f'(x)

-f(x)

�� ���)
�����

>>> f = lambda x: x*x - 2
>>> find_zero(f, 1)
1.4142135623730951

How to find the square root of 2?

1. Compute the value of f at the guess: f(x)
2. Compute the derivative of f at the guess: f'(x)
3. Update guess to be:

Multiple return values,
separated by commas

Multiple assignment
to two names

def mul_rational(x, y):
 return rational(numer(x) * numer(y), denom(x) * denom(y))

Constructor Selectors

def add_rational(x, y):
 nx, dx = numer(x), denom(x)
 ny, dy = numer(y), denom(y)
 return rational(nx * dy + ny * dx, dx * dy)
def eq_rational(x, y):
 return numer(x) * denom(y) == numer(y) * denom(x)

def rational(n, d):
 """Construct a rational number x that represents n/d."""
 return (n, d)

from operator import getitem
def numer(x):
 """Return the numerator of rational number x."""
 return getitem(x, 0)

def denom(x):
 """Return the denominator of rational number x."""
 return getitem(x, 1)

def pair(x, y):
 """Return a functional pair."""
 def dispatch(m):
 if m == 0:
 return x
 elif m == 1:
 return y
 return dispatch
def getitem_pair(p, i):
 """Return the element at index i of pair p."""
 return p(i)

This function
represents a pair

def iter_improve(update, done, guess=1, max_updates=1000):
 """Iteratively improve guess with update until done returns a true value.

 >>> iter_improve(golden_update, golden_test)
 1.618033988749895
 """
 k = 0
 while not done(guess) and k < max_updates:
 guess = update(guess)
 k = k + 1
 return guess

def newton_update(f):
 """Return an update function for f using Newton's method."""
 def update(x):
 return x - f(x) / approx_derivative(f, x)
 return update

def approx_derivative(f, x, delta=1e-5):
 """Return an approximation to the derivative of f at x."""
 df = f(x + delta) - f(x)
 return df/delta

def find_root(f, guess=1):
 """Return a guess of a zero of the function f, near guess.

 >>> from math import sin
 >>> find_root(lambda y: sin(y), 3)
 3.141592653589793
 """
 return iter_improve(newton_update(f), lambda x: f(x) == 0, guess)

2

1

3

1

2

3

• Every user-defined function has a
parent frame

• The parent of a function is the
frame in which it was defined

• Every local frame has a parent
frame

• The parent of a frame is the
parent of the function called

A
recursive
list is a

pair
The first element of
the pair is the first
element of the list

The second element of
the pair is the rest

of the list

None
represents
the empty

list

empty_rlist = None
def rlist(first, rest):
 """Make a recursive list from its first element and the rest."""
 return (first, rest)
def first(s):
 """Return the first element of a recursive list s."""
 return s[0]
def rest(s):
 """Return the rest of the elements of a recursive list s."""
 return s[1]

If a recursive list s is constructed from a first element f and
a recursive list r, then
• first(s) returns f, and
• rest(s) returns r, which is a recursive list.

Length. A sequence has
a finite length.

Element selection. A
sequence has an
element corresponding
to any non-negative
integer index less
than its length,
starting at 0 for the
first element.

def len_rlist(s):
 """Return the length of recursive list s."""
 length = 0
 while s != empty_rlist:
 s, length = rest(s), length + 1
 return length

def getitem_rlist(s, i):
 """Return the element at index i of rlist s."""
 while i > 0:
 s, i = rest(s), i - 1
 return first(s)

A function’s signature
has all the information
to create a local frame

. . .

CS 61A Midterm 2 Study Guide – Page 1

for <name> in <expression>:
 <suite>
1. Evaluate the header <expression>, which must yield an

iterable value.
2. For each element in that sequence, in order:

A. Bind <name> to that element in the local environment.
B. Execute the <suite>.

A range is a sequence of consecutive integers.*

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

range(-2, 2)
>>> city = 'Berkeley'
>>> len(city)
8
>>> city[3]
'k'

Length. A sequence has a finite length.

Element selection. A sequence has an element
corresponding to any non-negative integer index less
than its length, starting at 0 for the first element.

An element of a string
is itself a string!

(<map exp> for <name> in <iter exp> if <filter exp>)
• Evaluates to an iterable object.
• <iter exp> is evaluated when the generator expression
is evaluated.

• Remaining expressions are evaluated when elements are
accessed.

x = 2
Status Effect

•No nonlocal statement
•"x" is not bound locally

Create a new binding from name "x"
to object 2 in the first frame of
the current environment.

•No nonlocal statement
•"x" is bound locally

Re-bind name "x" to object 2 in the
first frame of the current env.

•nonlocal x
•"x" is bound in a non-local frame
•"x" also bound locally

SyntaxError: name 'x' is parameter
and nonlocal

•nonlocal x
•"x" is not bound in a non-local
frame

SyntaxError: no binding for nonlocal
'x' found

•nonlocal x
•"x" is bound in a non-local frame
(but not the global frame)

Re-bind "x" to 2 in the first non-
local frame of the current
environment in which it is bound.

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib
Found in cache

R(n) = �(f(n))

k1 · f(n) � R(n) � k2 · f(n)

n: size of the problem
R(n): Measurement of some resource used (time or space)

means that there are constants k1 and k2 such that

for sufficiently large values of n.
�(n2)�(n3)�(bn) �(n) �(log n) �(1)

>>> suits = ['heart', 'diamond', 'spade', 'club']
>>> from unicodedata import lookup
>>> [lookup('WHITE ' + s.upper() + ' SUIT') for s in suits]
['♡', '♢', '♤', '♧']

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

Unlike generator expressions, the map expression is
evaluated when the list comprehension is evaluated.

A function with a
parent frame

The parent contains
local state

Every call changes
the balance

• Tuples are immutable sequences.
• Lists are mutable sequences.
• Dictionaries are unordered collections

of key-value pairs.
Dictionary keys do have two restrictions:
• A key of a dictionary cannot be an object of a

mutable built-in type.
• Two keys cannot be equal. There can be at most

one value for a key.

Generator expressions

List comprehensions

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to
pre-existing bindings in an enclosing scope.

Names listed in a nonlocal statement must not collide
with pre-existing bindings in the local scope.

Effect: Future assignments to that name change its
pre-existing binding in the first non-local frame of
the current environment in which that name is bound.

nonlocal <name> , <name 2>, ...

Python Docs: an
"enclosing scope"

Python pre-computes which frame contains each name before
executing the body of a function.
Therefore, within the body of a function, all instances of a
name must refer to the same frame.

Local assignment

Mutable values can be changed without a nonlocal statement.

Name-value binding
cannot change

Mutable value
can change

>>> a = Account('Jim')
>>> b = Account('Jack')

>>> a is a
True
>>> a is not b
True

Every object that is an instance of a user-defined class
has a unique identity:

Identity testing is performed by "is" and "is not" operators.
Binding an object to a new name using assignment does not create
a new object: >>> c = a

>>> c is a
True

 def pig_latin(w):
 if starts_with_a_vowel(w):
 return w + 'ay'
 return pig_latin(w[1:] + w[0])

 def starts_with_a_vowel(w):
 return w[0].lower() in 'aeiou'

• The def statement header is
similar to other functions
• Conditional statements check
for base cases
• Base cases are evaluated
without recursive calls
• Typically, all other cases are
evaluated with recursive calls

CS 61A Midterm 2 Study Guide – Page 2

•A class statement creates a new class and binds that class to
<name> in the first frame of the current environment.

•Statements in the <suite> create attributes of the class.

class <name>(<base class>):
 <suite>

<expression> . <name>To evaluate a dot expression:
1. Evaluate the <expression> to the left of the dot, which yields

the object of the dot expression.
2. <name> is matched against the instance attributes of that object;

if an attribute with that name exists, its value is returned.
3. If not, <name> is looked up in the class, which yields a class

attribute value.
4. That value is returned unless it is a function, in which case a

bound method is returned instead.

 class Account(object):

 interest = 0.02

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

Class attribute Constructor

Methods

Assignment statements with a dot expression on their left-hand
side affect attributes for the object of that dot expression
• If the object is an instance, then assignment sets an

instance attribute
• If the object is a class, then assignment sets a class

attribute

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.8
>>> jim_account.interest
0.8
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.8

 class CheckingAccount(Account):
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self, amount + self.withdraw_fee)

Base class

To look up a name in a class:
1.If it names an attribute in the

class, return the attribute value.
2.Otherwise, look up the name in the

base class, if there is one.

>>> ch = CheckingAccount('T')
>>> ch.interest
0.01
>>> ch.deposit(20)
20
>>> ch.withdraw(5)
14 class SavingsAccount(Account):

 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

 class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

 class ComplexRI(object):
 def __init__(self, real, imag):
 self.real = real
 self.imag = imag
 @property
 def magnitude(self):
 return (self.real ** 2 + self.imag ** 2) ** 0.5

Special decorator: "Call this
function on attribute look-up"

Type dispatching: Define a different function for each
possible combination of types for which an operation is valid

 def iscomplex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def isrational(z):
 return type(z) == Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

 def add_by_type_dispatching(z1, z2):
 """Add z1 and z2, which may be complex or rational."""
 if iscomplex(z1) and iscomplex(z2):
 return add_complex(z1, z2)
 elif iscomplex(z1) and isrational(z2):
 return add_complex_and_rational(z1, z2)
 elif isrational(z1) and iscomplex(z2):
 return add_complex_and_rational(z2, z1)
 else:
 add_rational(z1, z2)

Converted to a
real number (float)

 def coerce_apply(operator_name, x, y):
 tx, ty = type_tag(x), type_tag(y)
 if tx != ty:
 if (tx, ty) in coercions:
 tx, x = ty, coercions[(tx, ty)](x)
 elif (ty, tx) in coercions:
 ty, y = tx, coercions[(ty, tx)](y)
 else:
 return 'No coercion possible.'
 key = (operator_name, tx)
 return coerce_apply.implementations[key](x, y)

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations

 class Rlist(object):

 class EmptyList(object):
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

 def __len__(self):
 return 1 + len(self.rest)

 def __getitem__(self, i):
 if i == 0:
 return self.first
 return self.rest[i-1]

A recursive
call

The base
case

 class Tree(object):
 def __init__(self, entry,
 left=None,
 right=None):
 self.entry = entry
 self.left = left
 self.right = right

 def count_leaves(tree):
 if type(tree) != tuple:
 return 1
 return sum(map(count_leaves, tree))

 def map_rlist(s, fn):
 if s is Rlist.empty:
 return s
 rest = map_rlist(s.rest, fn)
 return Rlist(fn(s.first),rest)

When a class is called:
1. A new instance of that class is created:
2. The constructor __init__ of the class is called with the

new object as its first argument (called self), along with
additional arguments provided in the call expression.

>>> a = Account('Jim')

 class Account(object):
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

To look up a name in a class.
1. If it names an attribute in the class, return the attribute value.
2. Otherwise, look up the name in the base class, if there is one.

tom_account.interest = 0.08

But the name (“interest”)
is not looked up

Attribute
assignment

statement adds
or modifies

the “interest”
attribute of
tom_account

Instance
Attribute

Assignment
:

This expression
evaluates to an object

 def make_instance(cls):
 def get_value(name):
 if name in attributes:
 return attributes[name]
 else:
 value = cls['get'](name)
 return bind_method(value, instance)
 def set_value(name, value):
 attributes[name] = value
 attributes = {}
 instance = {'get': get_value, 'set': set_value}
 return instance

The class of the instance

Look up the name
in the class

Match name against
instance attributes

Assignment affects
instance attributes

 def bind_method(value, instance):
 if callable(value):
 def method(*args):
 return value(instance, *args)
 return method
 else:
 return value
 def make_class(attributes={}, base_class=None):
 def get_value(name):
 if name in attributes:
 return attributes[name]
 elif base_class is not None:
 return base_class['get'](name)
 def set_value(name, value):
 attributes[name] = value
 def new(*args):
 return init_instance(cls, *args)
 cls = {'get': get_value, 'set': set_value, 'new': new}
 return cls

Class attribute lookup

Common dispatch
dictionary pattern

 def init_instance(cls, *args):
 instance = make_instance(cls)
 init = cls['get']('__init__')
 if init is not None:
 init(instance, *args)
 return instance

Special constructor
name is fixed here

Dispatch dictionary

def make_account_class():
 interest = 0.02
 def __init__(self, account_holder):
 self['set']('holder', account_holder)
 self['set']('balance', 0)
 def deposit(self, amount):
 new_balance = self['get']('balance') + amount
 self['set']('balance', new_balance)
 return self['get']('balance')
 ...
 return make_class(locals())
Account = make_account_class()

�(log n)

CS 61A Final Exam Study Guide – Page 1

The interface for sets:
• Membership testing: Is a value an element of a set?
• Adjunction: Return a set with all elements in s and a value v.
• Union: Return a set with all elements in set1 or set2.
• Intersection: Return a set with any elements in set1 and set2.

Union

1

3
4

2

3
5

1

3
4

2

5

Intersection

1

3
4

2

3
5

3

Adjunction

1

3
4

2

1

3
4

2

Proposal 1: A set is represented by a recursive list that
contains no duplicate items.

�(n)

�(n2)

Proposal 2: A set is represented by a recursive list with
unique elements ordered from least to greatest.

Proposal 3: A set is represented as a Tree. Each entry is:
• Larger than all entries in its left branch and
• Smaller than all entries in its right branch

5

3

1 7

9

11

9

If 9 is in the set, it is somewhere in this branch

Exceptions are raised with a raise statement.
raise <expression>

<expression> must evaluate to an exception instance or class.

Exceptions are constructed like any other object; they are
just instances of classes that inherit from BaseException.

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

The <try suite> is executed first;

If, during the course of executing the
<try suite>, an exception is raised
that is not handled otherwise, and

If the class of the exception inherits
from <exception class>, then

The <except suite> is executed, with
<name> bound to the exception

Proposal 1 2 3

Adjunction

Membership

Union

Intersection

�(n)

�(n2)

�(n)

�(n)

�(n)

�(n)

�(log n)

�(n)

�(n)

first rest

Stored
explicitly

Evaluated
lazily

Streams are lazily
computed recursive lists

class Letters(object):
 """An iterator over letters."""
 def __init__(self):
 self.current = 'a'
 def __next__(self):
 if self.current > 'd':
 raise StopIteration
 result = self.current
 self.current = chr(ord(result)+1)
 return result
 def __iter__(self):
 return self

>>> letters = Letters()
>>> letters.__next__()
'a'
>>> letters.__next__()
'b'
>>> letters.__next__()
'c'
>>> letters.__next__()
'd'
>>> letters.__next__()
Traceback ...
StopIteration
>>> for x in Letters():
 print(x)
a
b
c
d

def letters_generator():
 """A generator function."""
 current = 'a'
 while current <= 'd':
 yield current
 current = chr(ord(current)+1)

class LetterIterable(object):
 """An iterable over letters."""
 def __iter__(self):
 current = 'a'
 while current <= 'd':
 yield current
 current = chr(ord(current)+1)

def integer_stream(first=1):
 def compute_rest():
 return integer_stream(first+1)
 return Stream(first, compute_rest)

def primes(pos_stream):
 def not_divisible(x):
 return x % pos_stream.first != 0
 def compute_rest():
 return primes(filter_stream(not_divisible, pos_stream.rest))
 return Stream(pos_stream.first, compute_rest)

def filter_stream(fn, s):
 if s is Stream.empty:
 return s
 def compute_rest():
 return filter_stream(fn, s.rest)
 if fn(s.first):
 return Stream(s.first, compute_rest)
 else:
 return compute_rest()

class Stream(object):
 """A lazily computed recursive list."""
 class empty(object):
 def __repr__(self):
 return 'Stream.empty'
 empty = empty()

 def __init__(self, first, compute_rest=lambda: Stream.empty):
 assert callable(compute_rest), 'compute_rest must be callable.'
 self.first = first
 self._compute_rest = compute_rest
 self._rest = None

 @property
 def rest(self):
 """Return the rest of the stream, computing it if necessary."""
 if self._compute_rest is not None:
 self._rest = self._compute_rest()
 self._compute_rest = None
 return self._rest

"Please don't reference directly"

def map_stream(fn, s):
 if s is Stream.empty:
 return s
 def compute_rest():
 return map_stream(fn, s.rest)
 return Stream(fn(s.first),
 compute_rest)

• A generator is an iterator backed
by a generator function.

• When a generator function is
called, it returns a generator.

A simple fact expression in the Logic language declares a
relation to be true.
Language Syntax:
• A relation is a Scheme list.
• A fact expression is a Scheme list of relations.
logic> (fact (parent delano herbert))
logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

E

F

A D G

B C H

logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color brown)))
logic> (fact (dog (name grover) (color tan)))
logic> (fact (dog (name herbert) (color brown)))

Relations can contain relations in addition to atoms.

logic> (query (parent abraham ?child))
Success!
child: barack
child: clinton

logic> (query (dog (name clinton) (color ?color)))
Success!
color: white

logic> (query (dog (name clinton) ?info))
Success!
info: (color white)

Variables can refer to atoms or relations in queries.

A fact can include multiple relations and variables as well:
(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all <hypothesisK> are true.
logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (child herbert delano))
Success!

logic> (query (child eisenhower clinton))
Failure.

logic> (query (child ?child fillmore))
Success!
child: abraham
child: delano
child: grover
A fact is recursive if the same relation is mentioned in a
hypothesis and the conclusion.
logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

The Logic interpreter performs a search in the space of
relations for each query to find a satisfying assignment.
(parent delano herbert) ; (1), a simple fact
(ancestor delano herbert) ; (2), from (1) and the 1st ancestor fact
(parent fillmore delano) ; (3), a simple fact
(ancestor fillmore herbert) ; (4), from (2), (3), & the 2nd ancestor fact

Two lists append to form a third list if:
• The first list is empty and the second and third are the same
• The rest of 1 and 2 append to form the rest of 3
logic> (fact (append-to-form () ?x ?x))
logic> (fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

>>> for x in letters_generator():
 print(x)
a
b
c
d
>>> for x in LetterIterable():
 print(x)
a
b
c
d

A basic interpreter has two parts: a parser and an evaluator.

Scheme programs consist of expressions, which can be:
• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...
Numbers are self-evaluating; symbols are bound to values.
Call expressions have an operator and 0 or more operands.

A combination that is not a call expression is a special form:
• If expression: (if <predicate> <consequent> <alternative>)
• Binding names: (define <name> <expression>)
• New procedures: (define (<name> <formal parameters>) <body>)

Lambda expressions evaluate to anonymous functions.

λ
 (lambda (<formal-parameters>) <body>)
Two equivalent expressions:
 (define (plus4 x) (+ x 4))
 (define plus4 (lambda (x) (+ x 4)))
An operator can be a call expression too:
 ((lambda (x y z) (+ x y (square z))) 1 2 3)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
They also used a non-obvious notation for recursive lists.
• A (recursive) Scheme list is a pair in which the second element is

nil or a Scheme list.
• Scheme lists are written as space-separated combinations.
• A dotted list has an arbitrary value for the second element of the

last pair. Dotted lists may not be well-formed lists.

 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1
 > (cdr x)
 2
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))
 (1 2 3 4)

Not a well-formed list!

Symbols normally refer to values; how do we refer to symbols?
 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in
the resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.
 > (car '(a b c))
 a
 > (cdr '(a b c))
 (b c)

Symbols are now values

Dots can be used in a quoted list to specify the second
element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

 > '(1 2 . 3)
 (1 2 . 3)
 > '(1 2 . (3 4))
 (1 2 3 4)
 > '(1 2 3 . nil)
 (1 2 3)
 > (cdr '((1 2) . (3 4 . (5))))
 (3 4 5)

1 2 3

1 2 3 4 nil

1 2 3 nil

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)
printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Lines forming
a Scheme
expression

A number or a Pair with an
operator as its first element A number

scheme_reader.py scalc.py

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)
printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Lines forming
a Scheme
expression

A number or a Pair with an
operator as its first element A number

scheme_reader.py scalc.py

A Scheme list is written as elements in parentheses:

(<element0> <element1> ... <elementn>)

Each <element> can be a combination or atom (primitive).
(+ (* 3 (+ (* 2 4) (+ 3 5))) (+ (- 10 7) 6))
The task of parsing a language involves coercing a string
representation of an expression to the expression itself.
Parsers must validate that expressions are well-formed.

A recursive
Scheme list

 '(+ 1'
 ' (- 23)'
 ' (* 4 5.6))'

Lines Expression

A Parser takes a sequence of lines and returns an expression.

Lexical
analysis Tokens Syntactic

analysis

'(', '+', 1
'(', '-', 23, ')'
'(', '*', 4, 5.6, ')', ')'

Pair('+', Pair(1, ...))

(+ 1 (- 23) (* 4 5.6))
printed as

• Iterative process
• Checks for malformed tokens
• Determines types of tokens
• Processes one line at a time

• Tree-recursive process
• Balances parentheses
• Returns tree structure
• Processes multiple lines

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.
Each call to scheme_read consumes the input tokens for exactly
one expression.
Base case: symbols and numbers
Recursive call: scheme_read sub-expressions and combine them

Apply

Eval

Recursive calls:
• Eval(operands) of call expressions
• Apply(operator, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined proc's

Requires an
environment
for name
lookup

Creates new
environments
when applying
user-defined
procedures

The structure of the
Scheme interpreter

To apply a user-defined procedure, create a new frame in which
formal parameters are bound to argument values, whose parent
is the env of the procedure, then evaluate the body of the
procedure in the environment that starts with this new frame.

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))

(f (list 1 2))

1

Pair

2

Pair

nil[parent=g] s

[parent=g] s

[parent=g] s

g: Global frame

f LambdaProcedure instance [parent=g]
The way in which names are looked up in Scheme and Python is
called lexical scope (or static scope).
Lexical scope: The parent of a frame is the environment in
which a procedure was defined. (lambda ...)
Dynamic scope: The parent of a frame is the environment in
which a procedure was called. (mu ...)

CS 61A Final Exam Study Guide – Page 2

> (define f (mu (x) (+ x y)))
> (define g (lambda (x y) (f (+ x x))))
> (g 3 7)
13

A procedure call that has not yet returned is active. Some
procedure calls are tail calls. A Scheme interpreter should
support an unbounded number of active tail calls.
A tail call is a call expression in a tail context, which are:
• The last body expression in a lambda expression
• Expressions 2 & 3 (consequent & alternative) in a tail context

if expression
(define (factorial n k)
 (if (= n 0) k
 (factorial (- n 1)
 (* k n))))

(define (length s)
 (if (null? s) 0
 (+ 1 (length (cdr s)))))

(define (length-tail s)
 (define (length-iter s n)
 (if (null? s) n
 (length-iter (cdr s) (+ 1 n))))
 (length-iter s 0))

Recursive call is a tail call

Not a tail call

for <name> in <expression>:
 <suite>

1. Evaluate the header <expression>, which yields an iterable object.
2. For each element in that sequence, in order:

A. Bind <name> to that element in the first frame of the current
environment.

B. Execute the <suite>.
An iterable object has a method __iter__ that returns an iterator.
>>> counts = [1, 2, 3]
>>> for item in counts:
 print(item)
1
2
3

>>> items = counts.__iter__()
>>> try:
 while True:
 item = items.__next__()
 print(item)
 except StopIteration:
 pass

