
Solution Midterm 2, Math 53, Summer 2012

1. (a) (10 points) Let f(x, y, z) be a differentiable function of three variables and define

F (s, t) = f(st2, s+ t, s2 − t).

Calculate the partial derivatives Fs and Ft in terms of the partial derivatives of f .

(b) (10 points) Compute the tangent plane to the surface z =
√
x3 + y2 at the point (4, 6, 10).

Solution:

(a) Using the chain rule

Fs = fx
∂x

∂s
+ fy

∂y

∂s
+ fz

∂z

∂s
= t2fx + fy + 2sfz,

and

Ft = fx
∂x

∂t
+ fy

∂y

∂t
+ fz

∂z

∂t
= 2stfx + fy − fz.

Note that each fx, fy, fz is evaluated at (x, y, z) = (st2, s+ t, s2 − t).

(b) Letting f(x, y) =
√
x3 + y2 the tangent plane has equation

z = f(4, 6) + fx(4, 6)(x− 4) + fy(4, 6)(y − 6).

Now

fx(x, y) =
3x2

2
√
x3 + y2

and fy(x, y) =
y√

x3 + y2

so

f(4, 6) = 10, fx(4, 6) =
12

5
, fy(4, 6) =

3

5
.

Then the equation of the tangent plane is

z = 10 +
12

5
(x− 4) +

3

5
(y − 6)

or equivalently
12x+ 3y − 5z = 16.
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2. (20 points) Let f(x, y) = 2y3 + x2y + x2 + 5y2.

(a) (10 points) Find all critical points of f .

(b) (10 points) Classify the critical points as local maximum, local minimum or saddle point
using the second derivatives test.

(a) Setting the partial derivatives equal to zero gives

fx = 2xy + 2x = 0⇔ x(y + 1) = 0 (1)

fy = 6y2 + x2 + 10y = 0 (2)

From (1) we obtain x = 0 or y = −1.

If x = 0: From (2) y(3y + 5) = 0 so y = 0 or y = −5
3
. We obtain the critical points (0, 0) and

(0,−5
3
).

If y = −1: From (2) x2 = 4 so x = ±2 and we get the critical points (2,−1) and (−2,−1).

Critical points: (0, 0), (0,−5
3
), (2,−1), (−2,−1).

(b) The second order partial derivatives are

fxx = 2y + 2, fyy = 12y + 10, fxy = fyx = 2x.

Then D(x, y) = (2y + 2)(12y + 10)− 4x2. Evaluating at the critical points

• D(0, 0) = 20 > 0, fxx(0, 0) = 2 > 0. Then (0, 0) is a local minimum.

• D(0,−5
3
) = 40

3
> 0, fxx(0,−5

3
) = −4

3
< 0. Then (0,−5

3
) is a local maximum.

• D(2,−1) = −16 < 0. Then (2,−1) is a saddle point.

• D(−2,−1) = −16. Then (−2,−1) is a saddle point.
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3. (a) (10 points) Let a > 1 be a constant. Evaluate the integral of the function f(x, y) =
ln(a2 + x2 + y2) over the region D in the plane described by

D = {(x, y) | x2 + y2 6 1, y > |x|}.

Hint: It may (or may not) be useful to know that

∫
lnxdx = x lnx− x+ C.

(b) (10 points) Calculate

∫∫∫
E

zex
2+y2+z2dV where E is the solid enclosed by the cone z =√

x2 + y2 and the plane z = 1.

(a) The integral is ∫ 3π
4

π
4

∫ 1

0

r ln(a2 + r2)drdθ =
π

2

∫ 1

0

r ln(a2 + r2)dr.

Substitute s = a2 + r2, ds = 2rdr to obtain

π

2

∫ 1

0

r ln(a2 + r2)dr =
π

4

∫ 1+a2

a2
ln s ds.

Using the hint, the value of the integral is

π

4
((1 + a2) ln(1 + a2)− a2 ln(a2)− 1).

(b) Using cylindrical coordinates, the cone becomes z = r and the integral is∫∫∫
E

zex
2+y2+z2dV =

∫ 2π

0

∫ 1

0

∫ z

0

zer
2+z2rdrdzdθ =

∫ 2π

0

∫ 1

0

zez
2 er

2

2

∣∣∣r=z
r=0

dzdθ

= π

∫ 1

0

ze2z
2 − zez2dz

= π
(e2z2

4
− ez

2

2

)∣∣∣1
0

=
π

4
(e2 − 2e+ 1)

=
π

4
(e− 1)2.
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4. (20 points) Let R be the region in the plane bounded by the lines y = 1 − x, y = 2 − x and
the hyperbola xy = 1

16
. Calculate ∫∫

R

2y dA,

using the change of variables u = x+ y, v = x− y.

The inverse of the transformation is x = u+v
2
, y = u−v

2
. The Jacobian is

∂(x, y)

∂(u, v)
=

∣∣∣∣12 1
2

1
2
−1

2

∣∣∣∣ = −1

2
.

We calculate the image of R in the uv-plane by mapping its boundary. The lines x + y = 1
and x+ y = 2 map to the lines u = 1 and u = 2 respectively. For the hyperbola

1

16
= xy =

u+ v

2

u− v
2

=
u2 − v2

4
,

then u2 − v2 = 1
4

which is a hyperbola. Soving for v gives v = ±
√
u2 − 1

4
.

The function 2y equals u− v. With this the integral is∫∫
R

2y dA =

∫ 2

1

∫ √u2− 1
4

−
√
u2− 1

4

(u− v)
1

2
dvdu =

∫ 2

1

u

√
u2 − 1

4
du

=
1

3

(
u2 − 1

4

)3/2∣∣∣2
1

=
1

8
(5
√

15−
√

3)

=

√
3

8
(5
√

5− 1).
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5. (20 points) Let I denote the integral I =

∫ 1

0

∫ z

0

∫ z

x

ze−y
2

dydxdz.

(a) (10 points) Rewrite the integral in the following orders dydzdx, dzdydx and dxdydz.

(b) (10 points) Evaluate I.

(a) For the order dydzdx switch the last two variables in the expression for I. This gives

I =

∫ 1

0

∫ 1

x

∫ z

x

ze−y
2

dydzdx.

For the order dzdydx switch the y and z in the previous expression for I taking x as a constant

I =

∫ 1

0

∫ 1

x

∫ 1

y

ze−y
2

dzdydx.

For the order dxdydz we can go back to the original expression of I and switch x and y,

I =

∫ 1

0

∫ z

0

∫ y

0

ze−y
2

dxdydz.

(b) Using the last expression from (a)

I =

∫ 1

0

∫ z

0

∫ y

0

ze−y
2

dxdydz =

∫ 1

0

∫ z

0

yze−y
2

dydz =

∫ 1

0

−z
2
e−y

2
∣∣∣z
0
dydz

=
1

2

∫ 1

0

−ze−z2 + zdz =
1

2

(z2
2

+
e−z

2

2

)∣∣∣1
0

=
e−1

4

=
1

4e
.
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6. (20 points) Let f(x, y, z) = x2 + y2 + z2. Find all solutions (x, y, z) of the system of equations

coming from minimizing f(x, y, z) subject to the constraint yz − x3

3
= 1 using the method of

Lagrange multipliers.

Then find the point (or points) where the minimum happens and write what that minimum
value is.

Let g(x, y, z) = yz − x3

3
, so that the restriction is g(x, y, z) = 1. Then ∇f = 〈2x, 2y, 2z〉

and ∇g = 〈−x2, z, y〉. The system of eqautions for the method of Lagrange multipliers is
∇f = λ∇g,

2x = −λx2 (1)

2y = λz (2)

2z = λy (3)

yz − x3

3
= 1 (4)

Using (2) and (3) we obtain 4y = λ2y, that is (4 − λ2)y = 0 from where y = 0 or λ = 2 or
λ = −2. We study each case.

Case 1: y = 0, then from (3), z = 0. From (4), x3 = −3, so x = −31/3. We obtain the point

(−31/3, 0, 0).

Case 2: λ = 2, then from (1), x = −x2 and from (2), y = z. For x = −x2 we have that
either x = 0 or x = −1.

Subcase 1: x = 0 and y = z. From (4), y2 = 1, so y = ±1 = z and we obtain the points

(0, 1, 1), (0,−1,−1).

Subcase 2: x = −1 and y = z. From (4), y2 = 2
3
, so y = ±

√
2
3

= z and we obtain the

points

(−1,

√
2

3
,

√
2

3
), (−1,−

√
2

3
,−
√

2

3
).

Case 3: λ = −2. Then from (1), x = x2 and from (2), y = −z. For x = x2 we have that
either x = 0 or x = 1. In either case, from (4) we obtain y2 = −1 for the case x = 0 and
y2 = −4

3
for the case x = 1, none of which has a solution.

There are five solution to the system of equations:

(−31/3, 0, 0), (0, 1, 1), (0,−1,−1), (−1,

√
2√
3
,

√
2√
3

), (−1,−
√

2√
3
,−
√

2√
3

).

Evaluating the function

f(0, 1, 1) = 2, f(0,−1,−1) = 2, f(−1,

√
2√
3
,−
√

2√
3

) =
7

3
, f(−1,−

√
2√
3
,

√
2√
3

) =
7

3
,

f(−31/3, 0, 0) = 32/3.

The minimum is attained at (0, 1, 1) and (0,−1,−1) and the minimum value is 2.
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7. (20 points) If you take the circle (y − 1
2
)2 + z2 = 1

4
in the yz-plane and rotate it about the

z-axis, the resulting surface is called torus. Its equation in spherical coordinates is ρ = sinφ.

The surface of equation ρ = cosφ is a sphere.

(a) (4 points) Convert the equation of the sphere ρ = cosφ to cartesian coordinates and
identify its radius and center.

(b) (16 points) Calculate the mass of the solid E that is inside the sphere ρ = cosφ and

outside the torus ρ = sinφ if the density equals σ(x, y, z) =
1√

x2 + y2 + z2
.

(a) Using that ρ cosφ = z we get ρ = z
ρ

that is ρ2 = z . Then x2 + y2 + z2 = z. Completing
square gives

x2 + y2 +
(
z − 1

2

)2
=

1

4
,

a sphere of radius 1
2

centered at (0, 0, 1
2
).

(b) We see that the angle θ moves from 0 to 2π. To find the range of φ we find the intersection
of ρ = sinφ and ρ = cosφ, that is we set sinφ = cosφ giving φ = π

4
. The description of E in

spherical coordinates is

E = {(ρ, φ, θ)|0 6 θ 6 2π, 0 6 φ 6
π

4
, sinφ 6 ρ 6 cosφ}.

The density in spherical coordinates is σ(ρ, φ, θ) = 1
ρ
. The total mass m is

m =

∫∫∫
E

σdV =

∫ π
4

0

∫ cosφ

sinφ

∫ 2π

0

1

ρ
ρ2 sinφdθdρdφ

= 2π

∫ π
4

0

∫ cosφ

sinφ

ρ sinφdθdρdφ = π

∫ π
4

0

ρ2
∣∣∣cosφ
sinφ

sinφdφ

= π

∫ π
4

0

(cos2 φ− sin2 φ) sinφdφ = π

∫ π
4

0

(2 cos2 φ− 1) sinφdφ

= π
(
−2

3
cos3 φ+ cosφ

)∣∣∣π4
0

=
π

3
(
√

2− 1).
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