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Problem 2. (Prof. Lin’s 2nd Midterm)

(a) Since the starship 1 is orbiting along a circular path, the equation of
motion in radial direction becomes

GMm, myv?
(Fuet) radiat = ——m — g (1)

where M is the mass of the star and m; is the mass of starship 1. Thus, the
mass of the star M, can be expressed in terms of G, R and v,

vR?
M, = 2
i )
(b) The speed of starship at the tangent point, v, is
ve = v + 0.5v = 1.5v (3)

(note that 0.5v given in the question is the RELATIVE SPEED of starship
2 compared to starship 1). The escape speed for the starship 2 necessary
for escaping the gravitational attraction by the star at the tangent point

becomes
2G M,
Vese = \/ - =V (4)

and we see that the starship 2 has a larger speed than the escape speed,

vy = 1.50 > Vese = V20 (5)

which implies that the starship can reach infinity or it has an unbounded
orbit.

e Alternative solution: The cost one has to pay to bring starship 2 from the
tangent point to the infinity will be

M; GM; GM;
AU = (_u) _ <_7m) _GMmy
r r—00 r r=R R
while the kinetic energy of starship 2 at the tangent point is
1 9GM mo
—mo(l5v)2 = — 5= 7
Sma(L5v)? = = (7

and therefore, the starship 2 has enough kinetic energy to overcome the
gravity of the star and reach the infinity. The starship 2 must have come
from outside of the star system.
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TA Midterm II - Lin
Problem 4 Solutions

Part A

Assume a rocket of mass M + Am is moving with a speed v. During some time,
At, a mass Am is ejected out the back with a velocity —v, (1000 m/s) with
respect to the rocket (v — v, relative to an outside observer). As a result of
this ejected mass, the rocket (now only of mass, M) is moving slightly faster,
v+ Av.

Because this is a sort of inelastic collision (energy is lost in the burning of
the fuel), we can investigate the problem using conservation of momentum. The
initial momentum (defining the direction of motion of the rocket to be positive)
of the system is,

pi = (M + Am)v

And the final momentum is,
ps = Am(v —v,) + M(v + Av)

So expanding these expressions and setting them equal to each other, we have
that
Muv + Amv = Amv — Amu, + Mv + MAv

We can cancel both terms on the right hand side, then and we have:
0=—Amv, + MAv
or,
Amv, = MAv

Now, because this takes some time, At, to happen, we can divide by At on both
sides of the previous equation, leaving us with,

Am A
At T AL

Now we have some familiar terms here. The first, AA—T, is the rate at which the
gas cloud behind the rocket is gaining mass. This is equal to the rate at which

the rocket is losing mass. So we can write that the current mass of the rocket is

M(t) = My — Rt



where M, is the original mass of the rocket (5500 kg), R is the mass loss rate
(42 = R =100 kg/s).
We also have %, which is the acceleration of the rocket. So we have:
Ma = Ruv,
Where we recognize Ma as the total force on an object. So the thrust on the
rocket is:
Finrust = Roy
Then the acceleration of the rocket is:
Rv,
M

We can replace the mass, M, on the right hand side with M (), the mass of the
rocket at any time, and get:

a =

Ruv,

Mi(t)
So at time ¢t = 0, we are given that the rocket has a mass of 5500 kg. This gives
an acceleration of

a =

- 100kg/s x 1000m/s
N 5500kg

At the time of burnout, the rocket has reduced its mass by 80%, so the mass at
burnout is 1000 kg(0.20 x 5500kg = 1100kg). This gives an acceleration of:

_ 100kg/s x 1000m /s
1100kg
Now, substituting in the full form of M (¢), we have:
Rv,
a=—"

My — Rt

Integrating with respect to time gives us:
tr tr Ruo.
/ ad — _ g
to ts Mo — Rt
—v, In(My — Rt)

= 18.2m/s>.

= 90.9m /s>

v(ty) — v(to)
v(ty) = —uv.InM(¢) i?
= —v,(InM(ty) —InM(ty))
M(tf)>
= —u;ln
(M(to)
M (to)
= o.In
(M(tf)
Now, in this case, Mty, is twenty percent of M(¢o), so their ratio is 5:
vy =0, In5=1000m/s *In5 = 1609m/s

to
ty




Part B

This problem can be done two ways: both involve conservation of momentum
and one of of which uses the center of mass.

Center of Mass Method

We are going to measure everything from position of the spacestation. The
spaceship has an unknown mass distribution, so we can just say that its center
of mass located a distance, d, away from the station and its total mass is M.
We also know that the astronaut is located 1m from the station with a mass, m.
When she pushes off, she will cause the rocket to move in the opposite direction.
The initial momentum in this reference frame is zero, so the center of mass does
not move. So we can calculate how far the ship can possibly move.
Initially, the center of mass of the astronaut-rocket system is located at

T = Md+m(1lm)

After the astronaut has hit the back of the rocket, she has traveled a distance
of the length of the rocket, minus however far the rocket has moved, s, so her
new position is (1m + ! — s). The rocket’s new position is then (d — s). So the
center of mass afterwards is located at

z=M(d—-s)+m(lm+1—2s)
Because the center of mass cannot move, we know that these positions are equal:
Md+m(lm)=M(d—s)+m(lm+1—s)=Md— Ms+m(lm) + ml —ms

Simplifying, this leaves:
0=—-Ms+ml—ms

Solving for s, the distance the ship has moved,

ml
M+m

100kg x 11m
100kg + 1000kg
= 1m

So the ship barely makes it.

Momentum Conservation and Kinematics

Another method for this problem actually uses the information about the astro-
nauts speed that was given. We again have to use momentum conservation, but
in a more transparent way (instead of just saying that it preserved the location
of the center of mass).



The astronaut pushes off the forward wall of the spaceship with a speed,
v = 10m/s, causing the spaceship to recoil at a speed v;, related by momentum
conservation:

mv — Mvgs =0
or,
m 100kg
= = 1 -1
v v 1000kg 0m/s m/s

So the relative velocity between the spaceship and the astronaut is v — vs.
Because the astronaut travels a distance, [ = 11m relative to the spaceship, the
time this takes is:

l
v — U
11m
10m/s + 1m/s
= 1s

The spaceship is moving at a speed 1m/s towards the space station for 1s, going
1m. Again, we see that the rocket barely gets there.



Problem 5 Solution

Note: Define right as the positive x-direction and up as the positive y-direction.

1 Part (a)

The final kinetic energy of the system cannot be greater than the initial kinetic energy of the system otherwise we’d

be creating energy in the system. Since we have v}

KE; >
Loy

— >

SV >
0

= —1%; we know their magnitudes are the same, v; = vo.

KE;

1 1
§mv% + §mv§ + imui
1 1
vag + §mv§

Since the right hand side can never be negative, we see that vo = v3 = 0 and the balls 2 and 3 must remain at
rest. It is clearly not possible for these balls to be completely unaffected by the collision. Quantitatively, we note
that momentum must be conserved, and given the above condition muvgZ # —muveZ. Momentum would not be

conserved.

= No, it is not possible for ball 1 to bounce backwards with the same speed.

= MU2g +MU3 g
= Vgt U3y

= MNU2,y — MU3y

2 Part (b)
Using momentum conservation in the x and y directions we have
Pa 1 M
Vo
Py : 0
U2,y

= Uzy

The only constraint on the x-components of vy and vz is that they add up to vy and they need not be equal. The
y-components of vy and vz must always be equal. Because of this, the angles can be different.
= Yes, it is possible for the angles to be different.

3 Part (c)

Again, using momentum conservation and that |v; |

= |vo| = |v3] = v

py:0 = mugsinfy — muzsinbs
0 = wsinfy; —vsinfy
sinfy = sinfs
0 = 03=10
Pz MUy = —mui + musg cos by + mus cos b3
vg = —wv-+wvcosf+vcosh
vg = (2cosf—1)v

The only constraint is that the term (2cosf — 1) must be positive since v is positive. We can see there are many

angles for 6 that will fulfill this condition.

= Yes, it is possible for them all to have the same speed but different directions.



Problem 6 LIN

Part A)

Conservation of momentun:
myv =(m, + m,)v,

m,v

Vv, =
m;+m,

After collision, Use Conservation of Energy:
1 1
E(m1 +m,)v,” =—kd

Use v2 from above and solve for d

m,v

A k(m, + m,)

PartB)
Energy initial = Energy final + Energy Lost

Energy,,, = %mzv2 - %kd2

EnergyLoxf _ 1 _ m2 ml

InitialKE m+m, m +m,

PartC)
__ % B m,Av
“E At At

m,v
Av = 2

-V
m, +m,
—n,m,v

- At(m, + m,)

avg

Note: Just magnitude accepted as well.



