
Math H54 Midterm 1
September 20, 2011

Professor Michael VanValkenburgh

Name:

Student ID:

Instructions: Show all of your work, and clearly indicate your answers. Use the backs of pages as scratch
paper. You will need pencils/pens and erasers, nothing more. Keep all devices capable of communication
turned off and out of sight. The exam has eight pages, including this one.

Remember: It is often possible to check your answer, and there is sometimes more than one way to
solve a problem.

Strategic Guidance: The problems are arranged in order of increasing difficulty and decreasing point
value. Problem 5 might only be the difference between an “A” and an “A+.”

Problem Your score Possible Points
1 6
2 6
3 6
4 4
5 3

Total 25
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1. (6 points) Consider the vectors v1 =




3
0
−3


, v2 =



−1
1
2


, and v3 =




4
2
−2


. Prove that {v1,v2,v3}

is a linearly independent set or find c1, c2, c3 ∈ R not all zero such that c1v1 + c2v2 + c3v3 = 0.

We row-reduce the matrix with column vectors vj :



3 −1 4
0 1 2
−3 2 −2


 →




3 −1 4
0 1 2
0 1 2




→



3 0 6
0 1 2
0 0 0




→



1 0 2
0 1 2
0 0 0


 .

Now take, for example, c1 = 2, c2 = 2, and c3 = −1. Then we can check:

c1v1 + c2v2 + c3v3 = 2




3
0
−3


 + 2



−1
1
2


−




4
2
−2




=




0
0
0


 .

(The principle we are using is that Ax = 0 and rref(A)x = 0 have the same solutions.)
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2. (6 points) Consider the matrix

A =




1 2 0 3 0
1 2 −1 −1 0
0 0 1 4 0
2 4 1 10 1
0 0 0 0 1




.

Find an invertible matrix P and a matrix R in reduced-row echelon form such that PA = R.

We row-reduce the augmented matrix:



1 2 0 3 0 r1

1 2 −1 −1 0 r2

0 0 1 4 0 r3

2 4 1 10 1 r4

0 0 0 0 1 r5



→




1 2 0 3 0 r1

0 0 −1 −4 0 r2 − r1

0 0 1 4 0 r3

2 4 1 10 0 r4 − r5

0 0 0 0 1 r5




→




1 2 0 3 0 r1

0 0 0 0 0 r2 − r1 + r3

0 0 1 4 0 r3

0 0 1 4 0 r4 − r5 − 2r1

0 0 0 0 1 r5




→




1 2 0 3 0 r1

0 0 1 4 0 r3

0 0 0 0 1 r5

0 0 0 0 0 r4 − r5 − 2r1 − r3

0 0 0 0 0 r2 − r1 + r3




The coefficient matrix here is the matrix R. Let

P =




1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
−2 0 −1 1 −1
−1 1 1 0 0




.

Now we can check:

PA =




1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
−2 0 −1 1 −1
−1 1 1 0 0







1 2 0 3 0
1 2 −1 −1 0
0 0 1 4 0
2 4 1 10 1
0 0 0 0 1




=




1 2 0 3 0
0 0 1 4 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0




= R.

Note: You can do the same calculations in different notation by row-reducing



1 2 0 3 0 1 0 0 0 0
1 2 −1 −1 0 0 1 0 0 0
0 0 1 4 0 0 0 1 0 0
2 4 1 10 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1




.
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This way involves a bit more writing, but in principle it is not any harder...

Note that the matrix P is not unique.
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3. (6 points) It is a fact that if A,B, C, D ∈Mn,n are such that AC = CA, then

det
(

A B
C D

)
= det(AD − CB).

(The matrix on the left is 2n × 2n and the matrix on the right is n × n.) Give an example of
A,B, C, D ∈M2,2 such that

det
(

A B
C D

)
6= det(AD − CB).

Explicitly compute both determinants, showing that they are not equal.

One example is given by

A =
(

1 0
0 0

)
, B =

(
1 0
0 1

)
, C =

(
1 −1
0 0

)
, D =

(
0 0
1 1

)
.

Then

det




1 0 1 0
0 0 0 1
1 −1 0 0
0 0 1 1


 = det




1 0 0 0
0 0 0 1
1 −1 0 0
0 0 1 0




= (−1)2 det




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1




= −1.

On the other hand,

AD − CB =
(

1 0
0 0

)(
0 0
1 1

)
−

(
1 −1
0 0

)(
1 0
0 1

)

=
(

0 0
0 0

)
−

(
1 −1
0 0

)

=
(−1 1

0 0

)
,

so
det(AD − CB) = 0.

There are many other examples (so this will be a difficult problem to grade). Simply start with two
matrices A,C ∈ M2,2 such that AC 6= CA, then try to cook up B, D ∈ M2,2 to give the desired
property. Choose A,B, C,D to be as simple as possible, to make all the computations easy.

Here’s another example:

A =
(

0 1
1 0

)
, B =

(
1 0
0 1

)
, C =

(
1 0
1 0

)
, D =

(
1 0
0 0

)
.

Then

det
(

A B
C D

)
= 1

and
det(AD − CB) = 0.
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4. For any A ∈Mm,n it is true that

(I) If A is surjective (onto), then the transpose AT is injective (one-to-one), and

(II) If A is injective, then AT is surjective.

a. (3 points) Prove either (I) or (II).

b. (1 point) Give a brief description of how you might try proving the other direction. (You may appeal
to geometric intuition.)

You only needed to completely prove one of the above statements, then just give a sketch of the other
statement. For completeness, I’ll give two proofs of each of the statements.

First Proof.

In either case, there exists an invertible matrix P ∈ Mm,m and a matrix R ∈ Mm,n in reduced row
echelon form such that PA = R.

(I): Assume A is surjective. We first prove that R is surjective. Let b ∈ Rm. Since A is surjective,
there exists some x ∈ Rn such that Ax = P−1b. Thus

Rx = PAx = PP−1b = b,

so R is surjective.

Since R is surjective and is in reduced row echelon form, it must have a pivot in every row (otherwise
there is a row of zeros). Thus RT has a pivot in every column, hence is injective.

Now we will see that AT is injective. Suppose AT x = 0. Then

RT (PT )−1x = AT x = 0.

Since RT is injective, x = 0. Hence AT is injective.

(II): Assume A is injective. We first prove that R is injective. Suppose Rx = 0. Thus, PAx = 0,
hence Ax = 0, hence x = 0.

The columns of R are thus linearly independent. Since R is in reduced row echelon form, it thus has
a pivot in every column. Thus RT has a pivot in every row, so is surjective.

Now we will show that AT is surjective. Let b ∈ Rn. Then there exists some x ∈ Rm such that
RT x = b. Hence

AT (PT x) = x,

so AT is surjective.

Second Proof. (More beautiful, more elegant...)

(I): Let ej ∈ Rm be the vector with a 1 in the jth position and 0’s everywhere else. Since A is surjective,
there exists vj ∈ Rn such that Avj = ej . Let B ∈Mn,m be the matrix whose jth column is vj . Then
AB = Im. Hence BT AT = Im.

Now suppose AT x = AT y for some x,y ∈ Rm. Then

x = BT AT x = BT AT y = y,
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which shows that AT is injective.

(II): Suppose AT is not surjective. Then

{AT x; x ∈ Rm} 6= Rn.

There exists some 0 6= y ∈ Rn that is perpendicular to the whole set {AT x; x ∈ Rm}. That is,

y ·AT x = 0 for all x ∈ Rm.

Hence
Ay · x = 0 for all x ∈ Rm.

Thus Ay = 0. Since y 6= 0, this shows that A is not injective.
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5. (3 points) In class I stated but did not prove the fact that there is a unique function fromMn,n to R that
is multilinear, alternating, and normalized. Assume existence and prove uniqueness. That is, assume
there is such a function and call it “det.” Show that if D :Mn,n → R is another such function, then in
fact D = det. (Hint : The proof I have in mind is similar to our proof that det(AB) = det(A) det(B).)

Let A ∈ Mn,n. Then there exist elementary matrices Ej and a matrix R in reduced-row echelon form
such that

EpEp−1 · · ·E2E1R = A.

Let D : Mn,n → R be multilinear, alternating, and normalized. For any B ∈Mn,n, we have:

(a) Since D is alternating, when Ej represents “interchange” we have

D(EjB) = −D(B).

(b) Since D is multilinear, when Ej represents “replacement” we have

D(EjB) = D(B).

(a) Since D is multilinear, when Ej represents “multiplication of a row by c 6= 0” we have

D(EjB) = cD(B).

In the special case when D = det and B = I, this says

det(Ej) =





−1 if Ej represents interchange
1 if Ej represents replacement
c if Ej represents multiplication of a row by c 6= 0.

So we have
D(EjB) = det(Ej)D(B) for any B ∈Mn,n.

Thus

D(A) = D(EpEp−1 · · ·E2E1R)
= det(Ep) · · · det(E1)D(R)
= det(Ep · · ·E1)D(R).

If R = I, then
D(A) = det(A)

since D is normalized.

If R 6= I, then it has a row of zeros. Thus

D(A) = 0 = det(A)

since D is alternating.

So in all cases
D(A) = det(A)

for all A ∈Mn,n. That is, D = det.
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