UNIVERSITY OF CALIFORNIA, BERKELEY

College of Engineering

Department of Electrical Engineering and Computer Sciences

EE 105: Microelectronic Devices and Circuits

Total

Spring 2013

MIDTERM EXAMINATION #1

	Time all	otted: 45 minutes	
NAME:	·		
STUDE	NT ID#:		:
INSTRI	UCTIONS:		
1. U	nless otherwise stated, assu a. temperature is 300 K b. material is Si	me	
3. C	HOW YOUR WORK. (Ma Specially, while using cl have got your numbers. write down what doping learly mark (underline or b pecify the units on answers	nart, make sure that you For example, if reading density that correspond ox) your answers.	indicate how you off mobility, clearly is to.
	SCORE:1	/ 15	
	2	/15	

/ 30

PHYSICAL CONSTANTS

<u>Description</u>	Symbol	<u>Value</u>	PROPERTIES OF SILICON AT 300K			
Electronic charge	q	1.6×10 ⁻¹⁹ C	<u>Description</u>	<u>Symbol</u>	<u>Value</u>	
Boltzmann's constant	k	8.62×10 ⁻⁵	Band gap energy	$E_{\mathbf{G}}$	1.12 eV	
		eV/K	Intrinsic carrier	$n_{\rm i}$	10^{10}cm^{-3}	
Thermal voltage at	$V_{\mathrm{T}} =$	0.026 V	concentration			
300K	kT/q		Dielectric permittivity	$arepsilon_{\mathrm{Si}}$	1.0×10^{-12}	
$V_{\rm T} \ln(10) = 0.060 \text{ V}$ at $T=300 \text{ K}$						

Electrostatics:
$$\frac{dE}{dx} = \frac{\rho}{\varepsilon}$$
 $E = -\frac{dV}{dx}$

Depletion region Width:
$$W = \sqrt{\frac{2\varepsilon}{q} \left(\frac{1}{N_a} + \frac{1}{N_d} \right) \left(V_{bi} - V_{Applied} \right)}$$

Reverse saturation current of a diode, $J_S = q n_i^2 \left(\frac{D_n}{N_A L_n} + \frac{D_p}{N_D L_p} \right)$

Electron and Hole Mobilities in Silicon at 300K

Prob 1. [15]

(a) [12 pts] A Si sample is doped first with B to 10¹⁷ /cm³.
 (i) [2 pts] Find out the number of electrons and holes.

$$n = \frac{n_i^2}{N_A}$$

$$= \frac{10^{20}}{10^{17}}$$

$$= \frac{10^3/cm^3}{10^{17}/(cm^3)}$$

$$= \frac{10^{17}/(cm^3)}{10^{17}/(cm^3)}$$

(b) [10 pts] Now the Si sample is further doped with As to 2×10^{17} /cm³ and a voltage of 1 Volt is applied across the sample. Find out the amplitude of the current that will flow due to this voltage. Assume that the sample has the following dimensions: Length=10 μ m, Width=1 μ m and thickness=1 μ m.

As is a donor.

$$NA + N_b = (a+1) \times 10^{17} = 3 \times 10^{17} / cm^3$$

$$1. I = R$$

$$N = (a+1) \times 10^{17} = 10^{17} / cm^3 = \frac{1}{10^{5/8}}$$

$$H = 500 cm^{7} / v - sec$$

$$= 8 \Omega^{1} cm^{1}$$

$$P = \frac{1}{6} = \frac{1}{8} \Omega - cm$$

$$\therefore R = 9 \frac{1}{4} = \frac{1}{8} \times 10 \times 10^{4} \times \frac{1}{16^{4} \times 10^{4}}$$

$$\therefore R = 9 \frac{1}{4} = \frac{1}{8} \times 10 \times 10^{4} \times \frac{1}{16^{4} \times 10^{4}}$$

$$\therefore R = 9 \frac{1}{4} = \frac{1}{8} \times 10 \times 10^{4} \times \frac{1}{16^{4} \times 10^{4}}$$

(c) [3 pts] What is the mechanism of current flow in a p-n junction diode under (i) forward and (ii) reverse bias. Simply mention the mechanisms.

Prob 2: [15 pts]

- (a) [3 pts] For the following p-n junction diode, roughly sketch the
- (i) charge density profile
- (ii) electric field profile
- (iii) energy band diagram

across the junction.

(b)[8 pts] A p-n junction has to be designed such that the width of the depletion region on the N side is 0.212 μ m, the built in potential is 0.72 V and the maximum electric field at the junction is 3.4x10⁴ V/cm. What doping density on the p and n side will have to be used to design such a diode? What is the capacitance of this diode?

$$\frac{\partial E}{\partial x} = \frac{9}{8}; E = -\frac{\partial V}{\partial x}$$

$$\frac{\partial E}{\partial x} = \frac{9}{8} \text{ in } V = \frac{10^{-12} \times 3.4 \times 10^{14}}{10^{-12} \times 3.4 \times 10^{14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-12} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 3.4 \times 10^{14}}{1.6 \times 10^{-14} \times 10^{-14}} = \frac{10^{-18} \times 10^{-14}}{1.6 \times 10^{-14}} = \frac{10^{-18} \times 10^{-14$$

$$= \frac{1}{2} E_{max} (W_n + W_p) = \frac{1}{2} E_{max} W$$

$$W = \frac{2V_0}{E_{max}} = \frac{2\times0.72}{3.4\times10^4} = 0.4235 \ \mu m$$

$$\begin{vmatrix} c = \frac{\varepsilon}{N} = \frac{10^{-12}}{0.4235 \times 10^{-4}} = 2.36 \times 10^{-8} \text{ F/cm}^2 = 23.6 \text{ nF/cm}^2 \\ \text{at and around } \sqrt{50} \text{ V} \end{vmatrix}$$

(c) [4 pts] What are the different mechanisms of reverse bias breakdown in a p-n junction diode? What are the main physical mechanisms responsible for each of these breakdown mechanisms?

Two main mechanisms:

- (i) zener: happens due to tunneling when the diode is heavily doped
- (ii) avalanche: happens in a lowly doped junction at high reverse bias when the electrons can gain enough kinetic energy to generate additional electrons through avalanche.