Second Midterm Examination Friday April 3 2009 Closed Books and Closed Notes

Question 1 A Linkage System

As shown in Figure 1, a mechanical linkage consists of a system of 4 particles which are connected by a set of identical massless rods each of length L to a central point C. The masses of the particles are identical $m_1 = m_2 = m_3 = m_4$. The particle of mass m_3 is connected to a fixed point O by a linear spring of stiffness K and unstretched length L_0 . The mechanism moves on a smooth horizontal plane. A gravitational force acts normal to this plane.

Figure 1: A system of particles moving on a smooth horizontal plane.

(a) (6 Points) Starting from the representations for the position vector of the center of mass C and the position vector of the particle of mass m_1 ,

$$\mathbf{r} = x\mathbf{E}_x + y\mathbf{E}_y, \qquad \mathbf{r}_1 = L\mathbf{e}_{r_1} + \mathbf{r},\tag{1}$$

establish expressions for the linear momentum G_1 and angular momenta relative to O and C of the particle of mass m_1 .

(b) (4 Points) For the system of 4 particles,

$$\mathbf{G} = m \left(\dot{x} \mathbf{E}_x + \dot{y} \mathbf{E}_y \right), \qquad \mathbf{H}_C = m L^2 \dot{\theta} \mathbf{E}_z, \tag{2}$$

where $m = m_1 + m_2 + m_3 + m_4$ and $\dot{\theta} = \dot{\theta}_i$ (i = 1, 2, 3, 4). Using (2), what is \mathbf{H}_O ?

- (c) (3 Points) Draw a free-body diagram of the system of particles. In your solution, give a clear expression for the spring force.
- (d) (2 Points) Using a balance of linear momentum for each particle show that the normal force acting on each particle is equal and opposite to the gravitational force.
- (e) (5 Points) Show that H_O is conserved. In addition, show that H_C is not conserved.
- (f) (5 Points) Starting from the work-energy theorem for a system of particles, show that the total energy E of the system of particles is conserved.

Question 2

A System of Two Particles 25 Points

As shown in Figure 2, a particle of mass m_1 is at rest and is attached to a smooth horizontal surface by two identical linear springs of stiffnesses K and unstretched lengths L_0 . At time t = 0, a particle of mass m_2 traveling with a velocity vector $v_0 \mathbf{E}_x$ impacts the particle of mass m_1 . After the collision both particles adhere to each other, and can be considered as a particle of mass $m_1 + m_2$.

Figure 2: A system of two particles: (a) Prior to impact at t = 0, and (b) following the impact. The position vectors of the fixed points A and B are $\mathbf{r}_A = H\mathbf{E}_y + W\mathbf{E}_x$ and $\mathbf{r}_B = -H\mathbf{E}_y + W\mathbf{E}_x$, respectively

(a) (4 Points) Starting from the representation

$$\mathbf{r}_1 = (x + W) \, \mathbf{E}_x,\tag{3}$$

where W is a constant, establish representations for the linear momentum, kinetic energy, and acceleration of the particle of mass $m_1 + m_2$ after the collision.

(b) (5 Points) Show that the velocity of the particle of mass $m_1 + m_2$ immediately following the collision is

$$\dot{x}(t=0) = \frac{m_2}{m_1 + m_2} v_0. \tag{4}$$

Verify that the kinetic energy of the system is not conserved during the collision.

- (c) (6 Points) Draw a freebody diagram of the particle of mass m_1+m_2 following the collision. Give clear expressions for the spring forces acting on the particle.
- (d) (5 Points) Consider the system after impact. Starting from $\dot{T} = \mathbf{F} \cdot \mathbf{v}$ for a single particle, show that the total energy E of the particle of mass $m_1 + m_2$ is conserved. In your solution, give an expression for E.
- (e) (5 Points) Following the impact of the particle of mass m_2 , if $H = L_0$, show that the maximum displacement x_{max} of the particle of mass $m_1 + m_2$ is given by

$$x_{\text{max}}^{2} = \left(\left(\sqrt{\frac{m_{2}}{2K} \left(\frac{m_{2}}{m_{1} + m_{2}} \right)} \right) v_{0} + H \right)^{2} - H^{2}.$$
 (5)