Math 54.
Second Midterm

1. (12 points) A chemist solves a nonhomogeneous system of seven linear equations in ten unknowns and finds that four of the unknowns are free variables. Can the chemist be certain that, if the right-hand sides of the equations are changed, the new nonhomogeneous linear system will have a solution? Explain.
2. (21 points) The sets

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
5 \\
0 \\
5
\end{array}\right],\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]\right\} \quad \text { and } \quad \mathcal{C}=\left\{\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]\right\}
$$

are bases of a vector subspace V of \mathbb{R}^{3}.
(a). Find $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$.
(b). Find $\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$.
(c). If $T: V \rightarrow V$ is a linear transformation whose \mathcal{B}-matrix is $[T]_{\mathcal{B}}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, then find $[T]_{\mathcal{C}}$.
3. (15 points) For each of the following matrices, either show that it can be diagonalized, or that it can't be diagonalized.
(a). $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3\end{array}\right]$
(b). $\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right]$
4. (15 points) A 5×5 matrix A has characteristic polynomial $-\lambda^{3}(\lambda-1)(\lambda-3)$.
(a). What values can $\operatorname{dim} \operatorname{Nul} A$ have?
(b). For each value n you gave in part (a), answer the following question:

4
5. (22 points) Let $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 3 \\ 2 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}2 \\ 2 \\ 2 \\ 3\end{array}\right]$, and $\vec{v}_{3}=\left[\begin{array}{l}1 \\ 9 \\ 5 \\ 7\end{array}\right]$.
(a). Let $W=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$. Use the Gram-Schmidt process to find an orthogonal basis for W.
(b). Let $V=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$. Find the vector in V closest to \vec{v}_{3}.
(c). Find the distance between V and \vec{v}_{3}.
6. (15 points) Use methods from Math 54 to find an upper bound for the integral

$$
\int_{0}^{\pi / 2} \sqrt{x \sin x} d x
$$

Your answer may be an algebraic formula involving π and square roots, but not involving integrals, limits, or infinite sums.
[Hint: You may recall facts about integrals from homework problems and examples in the book.]

