Print your name	e:
Signature:	

SID

Discussion Section:

Instructor: D.-V. Voiculescu Math 54 Second Midterm Fall 2012 This is a "closed book" exam, so you may not bring in or use notes or the textbook. Calculators are not allowed.

Please write your name, SID and Discussion Section # on everything you hand in, including this sheet of paper on which you have to provide the answer to Problem II (the true or false questions). For Problem I you must show the method and calculations you use to get the answers (write the solutions to the questions in Problem I in your blue book). The Requirement is 20 points.

Problem I (3+2+2+3+3 pts) Let A and B be the matrices:

$$A = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 \\ -1 & 1 \\ 0 & 1 \end{pmatrix}$$

a) Find the eigenvalues and eigenvectors of A.

b) Find an invertible matrix S and a diagonal matrix D so that $D = S^{-1}AS$.

c) Apply Gram-Schmidt to the columns of B to find an orthonormal basis of Col (B).

d) Find the 4x4 matrix of the orthogonal projection onto Col (B).

e) Find a least squares solution of Bx = $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

Problem II (7 pts, each question 1 pt). Check True or False.

a)	If a, b, c, d $\in \mathbb{R}$ then $\sqrt{a^2 + 4b^2} \sqrt{c^2 + d^2} > ac + 2bd $
b)	The inverse of an orthogonal matrix is an orthogonal matrix
c)	$\langle {a \choose b}, {c \choose d} \rangle = \det {a \choose b \choose d}$ is an inner product on \mathbb{R}^2
d)	If E, F are symmetric 2x2 matrices, then so is EF.
e)	If W is a subspace of \mathbb{T}^4 and $\{x, y\}$ and $\{z, t\}$ are bases of W and W, then $\{x, y, z, t\}$ is a basis of \mathbb{T}^4 .
f)	An orthogonal 2x2 matrix is always diagonalizable
g)	If M is a 3x2 matrix then rank (A) + nullity (\overrightarrow{A}^T) = 3

True | False