Math 54 First Midterm Fall 2006 Instructor:D.V. Voiculescu This is a "closed book" exam, so you may not bring in or use notes or the textbook. Calculators are not allowed.

Please write your name, SID and Discussion Section # on everything you hand in, including this sheet of paper on which you have to provide the answers to Problem III (the true or false questions). For Problems I and II you must show the method and calculations you use to get the answers (write the solutions to these in your blue book). The Requirementis 20 points.

Problem I (5pts). Solve by Gauss elimination the system : x+y=1, x+z=-1, t+y=1, t+z-2w=-1

Problem II (4pts). Orthogonalize by Gram-Schmidt in \mathbb{R}^4 the vectors: (1,1,0,0), (-1,0,1,0), (0,1,0,1) .

(1,1,0,0), (-1,0,1,0), (0,1,0,1).		
ProblemIII (11pts, each question 1 pt). Check True or False.		1
a) $\{a+bX \mid (a,b) \in \mathbb{R}^2\}$ is a subspace of the vector space of polynomials of degree ≤ 3 .	True	False
b) \[\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix} \] is a product of elementary matrices		X
c) (1,1,1) & span{(1,2,3), (2,1,1)}		X
d) cost, sint, cos 2t are linearly dependent in C[0,1].	X	X
e) In a vector space the intersection of 2 subspaces is always a subspace	X	
f) In a vector space the union of 2 subspaces is always a subspace.		X
g) if A is the matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ then A is invertible.	X	
h) the angle of the vectors (1,1,1) and (1,2,3) is 120° .		X
i) in \mathbb{R}^3 , span $\{(1,2,3), (3,2,1)\}$ is a line.	X	X
j) the nullspace of $\begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 \\ 0 & 1 & 3 & 0 \end{bmatrix}$ contains a nonzero vector.	X	
k) $(1,1,0,0)$, $(0,1,1,0)$, $(0,0,1,1)$, $(1,0,0,1)$ is a basis in \mathbb{R}^4 .		X

