Midterm 1

Name	
T.A	

The boxes below are for your scores, do not write in them! Write your solutions in the spaces provided after each problem. Explain your reasoning in all cases: you may be graded on your explanations as well as on your answers.

1	
$\overline{}$ 2	
3	
4	
Total	

	20
	20
	15
	15
_	

1. Find X, if possible. If not, explain why not.

(a)
$$\begin{pmatrix} 3 & 2 \\ 5 & 3 \end{pmatrix} = X + \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 3 & 2 \\ 5 & 3 \end{pmatrix} = X \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$$

(c)
$$X = (1,2,3) \cdot (-1,3,4)$$

(d)
$$X \begin{pmatrix} 1 & 3 & 1 & 4 \\ 2 & 6 & 4 & 8 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 1 & 4 \\ 0 & 0 & 2 & 0 \end{pmatrix}$$

2. Consider the matrices:

$$A := \begin{pmatrix} 1 & -1 & 1 & -2 & -3 \\ 1 & 0 & 1 & -1 & -4 \\ 2 & -2 & 2 & -3 & -5 \\ 3 & -2 & 3 & -4 & -9 \end{pmatrix} \qquad \tilde{A} := \begin{pmatrix} 1 & 0 & 1 & 0 & -3 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Assuming these are row equivalent:

(a) Find a basis for the row space of A from among the rows of \tilde{A} .

(b) Find a basis for the column space of A from among the colums of A.

(c) Find a basis for the null space of A.

(d) What is the rank of A?

- 3. In each of the following examples, you are given a sequence of vectors in a vector space V. Answer the question, explaining your answer clearly, using complete sentences. Full credit will not be given if you just answer yes or no.
 - (a) Does the sequence ((2, 2, -1, 4), (1, 7, 3, 2), (1, 4, 3, -1)), form a basis for the vector space $V = \mathbb{R}^4$?
 - (b) Does the sequence $(x^2-2x+2,x^2+2x,x^2-1,x^2-3x+5)$ form a basis for the space of polynomials of degree less than or equal to 2?
 - (c) Suppose that (v_1, v_2, v_3, v_4) spans the null space of a 5 by 7 matrix A of rank 4. Is the sequence (v_1, v_2, v_3, v_4) linearly independent?

- 4. Let $M_{2,2}$ denote the vector space of all 2×2 matrices, and if $A \in M_{2,2}$, let tr(A) denote the sum of the diagonal terms, and let W be the set of all $A \in M_{2,2}$ such that tr(A) = 0.
 - (a) Find a basis for W.

- (b) Compute the dimension of W.
- (c) Find the coordinates of $\begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix}$ with respect to your basis.