Mathematics 54W Professor A. Ogus
Spring 2005

Final Solution Set—May 18, 2005

Work each problem on a separate sheet of paper. Be sure to put your name,
your section number, and your GSI’s name on each sheet of paper. Also,
at the top of the page, in the center, write the problem number, and be
sure to put the pages in order. Write clearly—explanations (with complete
sentences when appropriate) will help us understand what you are doing.
Math 49 students taking the linear algebra portion should work problems
1-5; Math 49 students taking the differential equation should work problems
6-10.
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(2 points each)

(a) Find a matrix B which is in reduced row echelon form and which
is row equivalent to A.

(b) Find a basis for the null space of A.

(c) Find a basis for the column space of A from among the columns
of A.
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(d) Find all X such that AX = (—1) :
0



3
(e) Find at least one X such that AT AX = AT B, where B = (—2) .
1

Hint: you do not need to calculate AT A to do this.

2. Write the definition of each of the following concepts. Use complete
sentences and be as precise as you can.
(2 points each)

(a) The inverse of a matrix.

(b) A linearly independent sequence in a vector space V.

(¢) The dimension of a vector space. State the theorem which makes
this definition meaningful.

(d) The orthogonal projection of a vector in R" onto a linear subspace
w.

(e) An eigenvector of a linear operator T:V — V.



3. Let V be the space of vectors in R* such that 1+ a9+ 23+ 24 =0.
and let W be the set of vectors in V' such that 1 = z4.

(a) (3 pts). Find an orthogonal basis (v, vs,v3) for V with v; =
(0,1,—1,0) and such that (vy,v9) is a basis for W.

(b) (4 pts). Find the orthogonal projection of v := (2,1,3, —6) on W.

(c) 3 pts). Find the distance from v to W.

4. Suppose that A is a matrix with 4 rows and 8 columns, and suppose
that the rows of A span a three dimensional subspace of R®. Answer
the following questions, explaining you reasoning.

(a) (2 pts.) What is the dimension of the space spanned by the
columns of A?

(b) (2 pts.) What is the dimension of the null space of A?

(c) (2 pts.) What is the dimension of the null space of AT A?

(d) (4 pts.) Prove that for any m x n real matrix A, the ranks of
AT A and of A are the same
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5.LetA—(4 2).

(a) (2 pts.) Find the eigenvalues of A.

(b) (3 pts.) We know that there exist matrices S and 7" such that
A= STS™ !, where T is upper triangular. Find T.

(c¢) (3 pts.) Now compute et as a function of ¢.

(d) (2 pts.) Find a matrix B with positive eigenvalues such that
B* = A.



6. Consider the system of differential equations:

=y
g = 2f—y

(a) (2pts.) Write this system as a vector-valued differential equation.

(b) (3 pts.) Find a fundamental solution set for the equation in part

(a).

(¢) (2 pts.) Compute the Wronskian of your solution set.

(d) (3 pts.) Find a pair of functions f, g satisfying the original system
and such that f(0) = —1 and ¢(0) = 5.



7. For each of the following matrices, sketch and describe the trajec-
tories of the solutions to the differential equation Y'(t) = AY (¢). In
particular, exhibit any asymptotes and/or invariant lines, draw arrows
indicating the direction of the flow along the solution, and say whether
the origin is a stable or unstable node, saddle point, etc.

() (3 pts) A= (g (1)>



8. Suppose Y"(z) = kY (x) and Y (0) = 0, Y'(3) = 0.
(a) For which values of k& € R is there a nontrivial solution to this
equation?

(b) Explain (prove) why you have found all such k. (This part will
count more than the actual answer.)

(¢) For each such k, give the corresponding solutions.



9. Suppose f:R — R is even, periodic with period 27, and satisfies
f(z) =sinx for x € [0, 7].

(a) (3 pts.) Draw a sketch of the graph of f, labeling your axes care-
fully.

(b) (5 pts.) Find a Fourier series which represents f. Explain how
you find the coefficients. You may use one or more of the formu-
las at the end of the test to evaluate the coefficients if you like.
This must be the cosine series expansion of the sine function.

(c) (2 pts.) Does the series converge to f at every point? Explain.



10. Suppose that a bar of length 7 with thermal coefficient o = 2 in
insulated on its surface except at the end points.

(a)

(2 pts.) Write the differential equation governing heat diffusion
in the bar described above.

(3 pts.) If the ends of the bar are kept at 0° and the initial tem-
perature distribution is u(z,0) = sin(5z), find a formula for the
temperature distribution at all times.

(2 pts.) If instead one end is kept at 7° and the other at 37°, what
is the limiting temperature distribution (steady state solution)
of the temperature as t — oo? Verify directly that this limit
distribution satisfies the equation in part (a).

(3 pts.) In the situation (c), assume again that the initial tem-
perature is given by u(z,0) = sin(5x). Find a formula for the
temperature distribution at time t. You may use one or more of
the formulas listed at the end of the test.



Formulas
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s
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= QZ p sin(fkz) for0<z<mw

sin(kz) for0<z <

sin(n) cos(z) = sin((1 4 n)x) —;—sin((n —1z)

sin((1 4 n)z) + sin((1 — n)x)
2

cos(nx) sin(x) =

10



