Physics TA, Section 1 (Chiao)
Final Exam
University of California at Berkeley

Monday, May 16, 2000, 12:30-3:30 pm. | and 4 Leconte

INPORTANT: Print your name., studeut 1D number. GSI name.
and vour discussion section munber on the front of your blue hook.

This cxam contains b questions, and will be praded out of a
fotal of 100 points.  You should answer all the questions 1o the
best of your ability, You are allowed both sides of three sheets of
handwritten notes, and the use of a caleulator, but no QWERTY
keyboards are allowed. Express all numerical rosults to 3 sipnificant
ficures. The IIJ“HWIII}“ are useful constants: The acceleration dne
to Iarth's gravity in the Bay Avea is g = 9.50 m/s*. The Earths's
radius is 1 = 6.38 x 108 km. The mass of the Earth is A= 5.97 < 10
ke, Newton's constant for universal gravitation is ¢ = 6.67 » 10!
Nu?kg 2,

Please show all your work in your blue book. Explain the steps
i vour reasoning in coherent, 1 11;J1~»h sentences. Define all symbols
that vou use. [f you do not show relevant work for any part of the
problem, you will not be awarded any credit, even il the answer is
corvect. If you recognize that an answer does not make physical
sense. aud you do not have time to find your error. write that you
know that the answer cannot be correet, and explain how vou know
this to be true. (We will award some credit for recognizing tln‘w i
an crror.) For full eredit, explain your reasoning carefully, show all
steps neatly. and box your answers. Cross out any work you decide
i incorrect. with an explanation in the marein.

Do the casiest problems first. You may answer the questions in
any order you wish. but please clearly label cach problen by mmber
to ensare that it is properly graded.

DO NOT OPEN THIS EXAM UNTIL YOU ARE TOLD 'TO
DO SO. STOP ALL WORK WHEN TOLD TO SO SO AT THE
IEND OF THIS EXAM. GOOD LUCK!!
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Fignure 1: Figure for Problem 1.

PROBLEM 1: A pendulum sliding down an incline (20 points). A
pendulum, which consists of a wassless string of length 1 attached to a mass 1.
swings from the top of a rigid mast, which is attached perpencdicilarly to a cart
slicing down a frictionless inclined plane, for oxample, down an inclined airtrack
attached rigidly to the tabletop, as shown i Figure 1. The cart A7 anc {he macs
irare both released from rest. The inclined plane is inclined at an angle 0 witl
respeet Lo the horizontal, and the mass m of the pendulum is initially inclined at
anangle (0 with respect to the mast. Yon may assume that the cart is suflicient]y
massive (Lew that AL > ) that the entire assembly of cart phis pendulum
nndergoes uniforin acceleration down the incline during, the swinging motion of
the pendulum. (HINT: Use Einstein's principle of equivalence, i.0., that unaforn
acceloration is equivalent to the application of an effectie gravitational held.)

(n) What must the initial release angle #" have to be so that the pendulin
midergoes no swinging motion at all as the cart slides frictionlessly down the
incline?

(L) For simall angular disturbances away from the angle @ which vou have
fonud fu part (a), what is the perior of oscillation of the pendulum as the cart
slides frictionlesslv down the ineline?
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Pigure 2: Fignre for Problem 2.

PROBLEM 2: Collision of putty and rod on ice (20 points). A thiu
rock of mass M and length L s at rest on the frictionless surface of an ice-skating
rinde Initinlly, the rod is suddenly strnck at a distance s from its conter of mass
by o picce of putty of mass i, which is sliding along the surlface of the ice,
and which is initially travelling perpendicularly to the rod with a velocity v,
The collision between the putty and the rod is perfectly inelastic, and the putiy
sticks o the rod after this collision.

(o) What is the translational velocity V' oof the new center of mass of the
systew afver the collision?

(b What is the angnlar velocity w of the system alter the collision?

() How much _h(_-nl_oﬂrg)_'}iﬁ released during the colligion?
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Figure 5: Figure for Problem 3.

PROBLEM 3: Maxwell-wheel Yo-Yo (20 points). A Maxwell's whoel
consists of asolid eylinder of radius R and mass M joined solidly to a cylindrical,
cemtral axle of radius » and mass m (see Figure 3). The racius r is smaller thau
the radiug . This wheel hangs by means of a vertical thread from the ceiling
i a1 Yo-Yo configuration as shown in Figure 3: The top of string is attached
to the ceiling, and the bottomn of the string is wrapped many times around the
centval axde of the wheel, which serves as a spool for the thread. Assume that
the thread does not slip with respect to the surface of the axle dnring the wheel's

motion. What is the downwards linear acceleration of the Maxwell's wheel (e
to pravity?
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Figure 4: Figure for Problen .

PROBLEM 4: A siphon connecting two tubs (20 points). A siphon
tube consists of glass tubing bent into a semicirele of radius + = 760 1w, and
then jomed at its two ends to two long, vertical straight sections of glass tubing
(see Figure 410 The inside radius o = 111 mum of this tubing is mueh smaller
than . The siphon is initially inverted into a U-tube configuration, completely
filled with hguid mercury, and then righted into o vertical conficuration shown
i Figure 0 so that its two openings are simudtancously innnersed into two
identical tubs of mercury, but at first without the water heing present in the
right tub. Tt is then observed that the mercury levels on both sides of the siphon
then drop down to two equal levels /i = h = 760 mum. thus initially creating a
vacuuin in the upper. semicireular part of the siplion. The two identical tnbs of
merenry placed on the horizontal tabletop consist of two identical evlinders with
au doside rading b = 111 mn which is mueh larger than a, with the wercury
tilling, the left tub to a height A, and the right tub to & height B, with A = B
at first. Assmne that A and B are both much lareer than b and W', Now water
i5 poured into the right tab 1o a height of ¢ = 25.4 nun above the vight-heuad



mercury level. You are given that the density of mercury is 13.6x 10" ke /1.
and that the density of water is 1.00x 10" kg/m®.

(a) What is the height /4" of the mercury level on the right side after the water
has been poured into the right tub. and the system has come into equilibrium?
Assume that the atmospheric pressure remains the same on the left and right
sides, and that water aud mercury are iminiscible liquids,  Assume that the
merenry and the water are incompressible.

(1) For small disturbances, what are the oscillation periods of the two liguid
marcury levels on the left and right sides of the siphon as shown in Figuee 17
Derive algebraic expressions for these two periods, and evaluate numerically 1o
three significant. figures. Since b >> a. we can neglect changes in heights of the
Huids in the tubs. Consider separately sinall disturbances on the left and on the
right. and conunent on whether these oscillation periods diller.

(¢} Now lower vertically the siphon tube deeper inta the two tubs, so tha
at a certain depth of immersion, the vacuum in the top. semicireular part of
fhe siphon just barely disappears.  For small disturbances. what is the gew
acillation period of the entire liquid system after the vacunm has just barely
disapprared? Derive an algebraic expression for this period. and evaluate nu-
merically to three signilicant Gpures.
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Figure 5: Figure for Problem 5.

PROBLEM 5: Two colliding Gaussian pulses on a rope (20 points).
A suapshot at £ = 0 of two conuter-propagating Gaussian prlses on o distorined
rope 15 shown in Figure 5. The rope s very long. has o aniform lnear nnss
density of g and s stretehed ont with a uniform tension 7. At equilibriv
before it was disturbed, the rope was completely straight, and coincided witl
the o axis. But now the displacement of the rope at £ = () is given by

I {4 ai Y L [ a1
R ol g W
yloot = 0) = Acexp | —= (:__.___“. - exp | —= (-— ”)
2\ 2\ o | J

which describes o superposition of two Gaussian pulses, as shown in Figure 5.

e pulse peaked al -y is travelling to the right, and the pulse negatively
praked at g s travelling to the left, so that they will eventually collide at the
coenter of the rope located at o = 0. Asswme that ag is el larger thau .

{iv) What does this solution to the wave equation for the rope become at any
arbitrary thne £

(O At what later time + = 1,y do the two Gaussian pulses collide, such that
that their respective maxinnun and minimum coincide at o = (07 Expross vonr
result in terms of wg. T, and g Find the solution y(a.f = {.,y). and sketch o
stiapshot of what the rope would look like at this instant of tine.

() Where did the energy of the two pulses go at ¢ = {7 Show from part
(o) that energy s conserved when £ — oo, and also for the ease of # =i, + -
where = 15 small. (HINTS: The energy of a pulse is Epubae = ll: dua p(éy /Ot }4,
For asmall 2/, exp (') = 14", Also. since [{q) = ’*: oxp (—onr®) de = \‘?Tr']_

thew = f (o) /oo == ]_': rrexp (- o) i = Vo fdat).
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