Midterm Examination 2

November 4, 2011

NAME	:	

SECTION: 1 or 2 (please circle your lecture section)

LAB:

SID :

#11: TuTh 8-10	#12: TuTh 10-12	#13: TuTh 12-2	#14: TuTh 2-4
#15: TuTh 4-6	#16: MW 8-10	#17: MW 10-12	#18: MW 2-4
#19: MW 4-6	#20: TuTh 10-12	#21: MW 3-5	#22: TuTh 4-6

(please circle your lab section)

Part	Points	Grade
A	4	
В	8	
С	3	
D	8	
Е	9	
F	8	
G	5	
TOTAL	45	

Notes: 1. Write your name on the top right corner of each page.

- 2. Record your answers only in the spaces provided.
- 3. You may <u>not</u> ask questions during the exam.
- 4. You may <u>not</u> leave the exam room before the exam ends.

Part A (4 points)

A.1 (2 points)

The following code uses the array M defined as:

$$M = \left[\begin{array}{rrr} 1 & 3 & -2 \\ 7 & -5 & 1 \end{array} \right]$$

```
M = [1 3 -2;7 -5 1];
temp = 0;
for k=M
   temp = temp + k(2);
end
temp
```

Record the output of the MATLAB code given above.

```
temp =
```

A.2 (2 points)

The following code uses the array B defined as:

$$B = \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right]$$

```
B = [1 2;3 4];
temp = 0;
for k=B
    for j=B
        temp = temp + k'*j;
    end
end
temp
```

Record the output of the MATLAB code given above.

Part B (8 points)

Consider a sequence of positive integer numbers defined by a(1) = 1, a(2) = 1, and a(3) = 2, and the recursive formula

$$a(n+3) = a(n+2) + a(n+1) + a(n)$$
, $n = 1, 2, ...$

B.1 (4 points)

Using recursion, complete the function card that computes the value of the k-th term in this sequence.

```
function a = card(k)
% Computes the value of the k-th term
% of the sequence of integers defined above
% where k is a positive integer

disp(['card, k = ' int2str(k)]);

if k==3
    a = 2;

elseif k == 1 || k == 2
    a = 1;

else
    a = card(k-3) + card(k-2) + card(k-1);

end
```

B.2 (2 points)

With the function card properly implemented, the following code is executed.

$$>> c5 = card(5);$$

Draw the tree depicting all the recursive calls made by the card function. Also, include the arrows showing the pre-order traversal of the tree.

B.3 (2 points)

With the function card properly implemented, the following code is executed.

>>

Carefully write what is displayed on the screen.

Part C (3 points)

The following lines of code are executed in the sequence listed:

```
>> h = plot(1:10,cos(1:10));
>> set(h,'LineWidth',2.7);
>> h2 = h;
>> clear h;
>> get(h2,'LineWidth');
>> get(h, 'LineWidth');
>> h3 = h2;
>> delete(h2);
>> get(h3,'LineWidth');
```

At least one of these lines of code WILL produce an error. Circle the error-producing line(s) of code. Listed below are several approximate error messages, with the variable or function names replaced by [name]. Next to each of the error-producing line(s) above, write the number corresponding to the error it will produce. The circle(s) and error number(s) you write down must be legible.

- 1. The expression to the left of the equals sign is not a valid target for an assignment.
- 2. Invalid handle object.
- 3. Undefined function or method [name] for input arguments of type double
- 4. Undefined function or variable [name]
- 5. Subscript indices must either be real positive integers or logicals.

Part D (8 points)

D.1 (4 points)

The number $(0.101)_2$ employs base2 notation, and is equal to $1 \cdot \frac{1}{2} + 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{8} = 0.625$.

Suppose the number R satisfies $0 \le R < 1$ and is an integer multiple of $\frac{1}{32}$. Let $(0.B)_2$ be the base2 representation of R. For example the number $(0.10100)_2$ employs base2 notation, and is equal to $1 \cdot \frac{1}{2} + 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{8} + 0 \cdot \frac{1}{16} + 0 \cdot \frac{1}{32} = 0.625$. The fraction B is written as a 1-by-5 array, $[1 \ 0 \ 1 \ 0 \ 0]$.

Complete the code below to compute the fraction B. Use the variable \mathbb{R} to represent a given number for which the conversion is taking place.

```
B = zeros(1,5);

for k = 1:5

if R >= (1/2)^k

B(k) = 1;

R = R - (1/2)^k;

end

end
```

What is the value of $\mathbb B$ after execution of this code if the initial value of $\mathbb R$ is equal to 0.8125?

B =

D.2 (1+1 points)

Record the output of each of the following MATLAB commands:

D.3 (1+1 points)

The IEEE double representation for x = 17.125 is

(note that the \cdots represent 42 bits of value 0, so that F in total is 52 bits).

What is the IEEE double representation for y = 34.25?

Answer:

What is the IEEE double representation for z=25.125?

Answer:

Part E (9 points) The polynomial of degree n-1 passing through points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ is given by the equation

$$P(x) = \sum_{i=1}^{n} L_i y_i ,$$

where

$$L_i = \frac{(x-x_1)\dots(x-x_{i-1})(x-x_{i+1})\dots(x-x_n)}{(x_i-x_1)\dots(x_i-x_{i-1})(x_i-x_{i+1})\dots(x_i-x_n)}.$$

Complete the following MATLAB code that determines the value of the polynomial P(x) evaluated at a given set of values.

```
function yValues = myLagrangeInt(Xd, Yd, xValues)
% Determines the polynomial function that passes through
% a given set of points in the (x,y) plane
% Input variables:
   Xd: 1-by-n, x-coordinates of the interpolated points
   Yd: 1-by-n, y-coordinates of the interpolated points
   xValues: vector of input values
% Output variable:
   yValues: vector of values of P for the corresponding xValues
nD = length(Xd);
nValues = length(xValues);
yValues = zeros(nValues, 1)
for i=1:nD
  L = ones(size(yValues));
   for j=1:nD
      if i = j
         L = L.*((xValues - Xd(j))) / (Xd(i) - Xd(j)));
      end
   end
   yValues = yValues + Yd(i) * L;
end
```

Part F (8 points)

A simple variant of Newton's method detects that the sequence of approximate solutions $x^{(1)}, x^{(2)}, \ldots$ is diverging, and restarts the iteration with an alternate value. In this problem, diverging is defined as meaning that the current iterate, $x^{(k)}$, satisfies the condition $|f(x^{(k)})| > divtol$, where divtol is a given positive scalar. If divergence is detected, then the method restarts the iteration from a new initial guess $(1+\operatorname{rand})*x^{(0)}$, where $x^{(0)}$ was the original initial guess.

Complete the following non-recursive function, which implements this variant of Newton's method:

```
function x = newton(fhan, fdhan, x0, tol, divtol)
% Newton's method to find roots of a function f
% Input Arguments
% fhan: function handle to f
% fdhan: function handle to the derivative of f
% x0: initial guess of root
% tol: tolerance for iteration converge (in x)
% divtol: tolerance for divergence check
% Output Argument
% x: final estimate of root
abs_error = 2*tol;
x = x0;
while (abs error>tol)
   % Calculate next iterate of Newton's method
   x_next = x - fhan(x) / fdhan(x);
   abs_error = abs(x_next-x);
   x = x_next
   % Check for divergence
   if abs(fhan(x)) > divtol
      % Restart with new initial guess
      x0 = (1 + rand) *x0;
      abs\_error = 2 * tol;
   end
end
```

Part G (5 points)

In this problem we determine the coefficients of a quadratic function of the form:

$$p(x) = c_1 x^2 + c_2 x + c_3$$

The polynomial p(x) must satisfy the constraint p(1) = 0. We would also like p(x) to satisfy the 4 constraints below.

$$p(-1) = 5$$
, $p(0) = 10$, $p(2) = 1$, $p(3) = 12$.

However, this is not possible, since the system of equations is over-determined. Instead, we wish to minimize the error,

$$E = (p(-1) - 5)^{2} + (p(0) - 10)^{2} + (p(2) - 1)^{2} + (p(3) - 12)^{2}$$

using least squares to solve this minimization.

G.1 (1 point)

By hand, solve for c_3 in terms of c_1 and c_2 such that the constraint, p(1) = 0, holds.

G.3 (1 point)

Rewrite the defining equation for p by substituting in the value for c_3 obtained in Part G.1. The rewritten p(x) should now only contain the c_1 and c_2 coefficients.

G.3 (3 points)

Set up the Least Squares problem which minimizes the error E

$$\min_{c} \|Ac - b\|$$

by correctly defining the matrix A and vector b, where $c=\left[\begin{array}{c}c_1\\c_2\end{array}\right].$