Chemistry 3A - Spring 2000 Midterm 3

Professor Jean Fréchet Your full signature April 17, 2000 Print your full name (Last name, First name, Middle) Your SID Please check the section number and name of your GSI/TA. 161 Verdugo.Dawn 361 Haman, Kristina 171 Klopp, John 371 Hecht.Stefan _181 Borths, Christopher 311 Saxon, Eliana 191 Fujdala,Kyle 321 Cook, Brian _111 Watkins, Gregory 461 Purdy, Matthew 121 Blackwell, Bethany 471 Evans, John

If you are making up an I-grade, indicate the semester you took 3A____ and the Professor_

This exam has 10 pages; make sure that you have them all. We will only grade answers that are in the designated spaces. Please do your scratch work on the backs of the exam pages. Write only one answer to each problem; multiple answers will receive no credit, even if one of them is correct.

Note: This examination runs for a total of 90 minutes. No questions will be answered by proctors after the exam begins. Please write legibly; ambiguous or messy answers will receive no credit.

A partial periodic table and data needed for calculations can be found on page 10 of the exam.

Do Not Wri	te in this Box.
DO NOT WIT	te iii tilis box.
1	_(14)
2	_(14)
3	_(11)
4	_(12)
5	_(13)
6	_(14)
7	_(10)
8	_(12)
Total	(100)
Total	(100)

411 Holland, Andrew

421 Duncan, Andrew

431 Trimble, Alexander

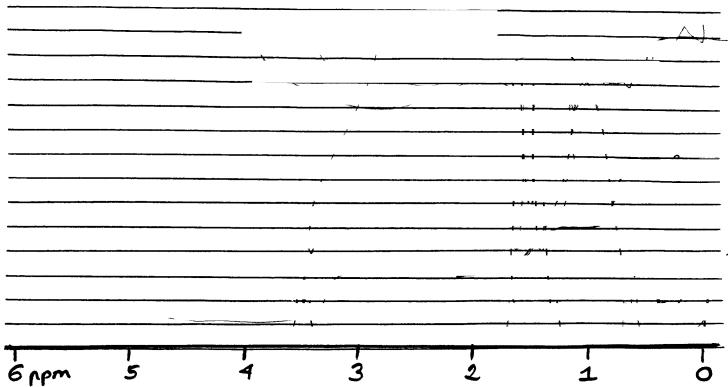
511 Marcaurelle, Lisa

√ 521 Jen, Wendy

531 Ling, Frank

131 Fox, Daniel

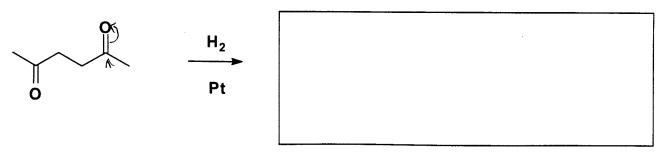
271 Lee, Charles


211 Tripp, Jennifer

221 Padilla, Omayra

141 Werkema, Evan

261 Peterka, Darcy


1. (14 points) (a) Draw the ¹H-NMR spectrum of CH₃CH₂CH₂Cl. In your drawing, show the appropriate location of the peaks (chemical shifts) as well as the splitting (assume that "ideal" spilling occurs). Each peak, or set of peaks, should be labeled to indicate which part of the molecule it corresponds to. Also show the peak integration as a "step" drawing.

(b) How many signals would be present in the "normal" (proton decoupled) 13 C NMR spectrum of CH $_3$ CH $_2$ CH $_3$ CH $_2$ CH $_3$ CH $_2$ CH $_3$ CH

Answer:

(c) Give the major product(s) of each of the following reactions.

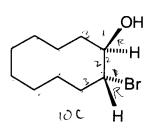
LiAIH₄
in ether

2. (14 points)

(a) Reaction of 2-bromo-2,3-dimethylbutane with strong base leads to elimination to form two isomeric alkenes A and B. Show the structure of each of these two alkenes and indicate how many peaks will be found in the ¹³C NMR spectra of each. (b) Which reagent (used in class) would be best to produce the highest yield of the alkene with the greatest number of peaks in its ¹³C NMR spectrum (be specific).

$$H_3C$$
 H_3C
 CH_3
 Br
 CH_3
 $A + B$

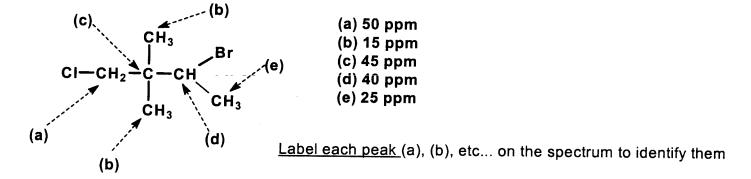
A =

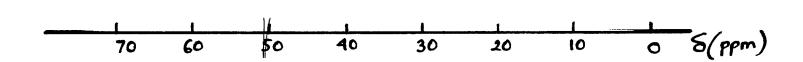

Number of peaks for A:

B =

Number of peaks for B:

(part b) Reagent used:

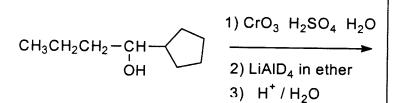

(c) Name the following according to IUPAC nomenclature. Specify absolute stereochemistry where appropriate.



HOCH₂CH(CH₂CH₂CH₃)₂

3. (11 points)

(a) The chemical shifts for the "normal" (proton-decoupled) NMR spectrum of 3-bromo-1-chloro-2,2-dimethyl butane are given below. Sketch the DEPT-135 spectrum for this molecule.



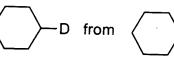
(b) Write a clear structure (Fischer projection) for <u>meso</u>-1,2,3,4-butanetetraol

4. (12 points). (a) write a clear structure (Fischer projection) for (R)-2-pentanol

(b) Give the expected major product of each of the following reaction sequences:

3) $H^{+}/H_{2}O$

1) $(CH_3)_2CHMgCI$ in ether


2) H^+/H_2O

5. (13 points)

(a) Show a step-by-step mechanism (with all curved arrows) for the reaction below:

(b) Complete the reactions below showing all the missing **reagents** (and key **solvents** if appropriate). In all cases the choice of reagent must be such that the product shown is <u>the</u> major product of the reaction.

6. (14 points) (a) show a step by step synthesis of

All reagents and also solvents, if appropriate, must be shown.

(b) propose a synthesis of $(CH_3)_2CH - CH_2CH_3$ from $CH_3CH_2CH_3$ and CH_3CH_3 CH₃ you must show all steps and include <u>all</u> reagents and solvents as appropriate.

7. (10 points) (a) propose a synthesis of

~~°

Show all steps, reagents, and solvents used.

from 1-bromopropane and 2-bromopropane

(b) Write the expected major product of the following reactions:

$$CH_3CH_2CH_2CH_2OH \xrightarrow{CrO_3} H^{+}/H_2O$$

8. (12 points)

(a) Propose a step by step synthesis of the compound below starting from cyclopentanol and any compound with three C atoms or less. Show all reagents and solvents where appropriate.

Note: There are no questions to be answered on this page, it only contains data that may be of use in solving the questions contained in this exam. Not all of the data given is needed.

Value of gas constant: R = 2.0 cal deg⁻¹ mol⁻¹

Value of e (base for natural logarithms) e = 2.718

Value of absolute zero (kelvin) = -273°C

Partial periodic table of the elements

IA										0
1 H 1.00794	IIA				IIIA	IVA -	VA	VIA	VIIA	He 4.00260
3 Li 6.941	Be 9.01218	II			5 B 10.811	6 C 12.011	7 N 14.0067	8 0 15.9994	9 F 18.9984	10 Ne 20.1797
11 Na 22.9898	12 Mg 24.3050		IB	IIB	13 Al 26.9815	14 Si _{28.0855}	15 P 30.9738	16 S 32.066	17 CI 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078		29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 AS 74.9216	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62		47 A9 107.868	48 Cd 112.411	49 In 114.82	50 Sn 118.710	51 Sb 121.75	52 Te 127.60	53 126.904	Xe 131.29
55 CS 132.905	56 Ba 137.327	~-	79 Au 196.967	80 H9 200.59	81 TI 204.383	82 Pb 207.2	83 Bi 208.980	84 Po (209)	85 At (210)	86 Rn (222)