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Problem 1

The subject of this problem is an ideal gas of N particles confined to
a one-dimensional line segment of length L. The energy of orbital n
is En = C n2 /L2, where C is a constant and n is an integer that is

greater than er—eguwat=o 0.

(a) Evaluate the single-particle partition function by approximating
the sum by an integral. A useful integral is the following: the
integral from O to infinity of exp(-x2?) with respect to x is (nw1/2)/2 .

(b) Using the approximation that the N-particle partition function is
given by Zn = (Z1)N/ N! , find the free energy F and from this, the
entropy.
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Problem 2

The subject of this problem is a one-dimensional version of thermal
radiation. We consider a one-dimensional line segment of length L.
- The possible frequencies for electromagnetic modes are those for
which L an integer multiple of a half-wavelength. Find the total
energy at temperature T. Use: §¥udu/(e“-)) = w2/6
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Problem 3

Consider a lattice of fixed hydrogen atoms. Suppose that each
atom can exist in three states:

State Number of electrons Energy
positive ion 0 Eg

neutral atom 1 E;
negative ion 2 | 25)

Given the chemical potential and the temperature, what is the
average number of electrons per atom, <N> ? What is <N2> ?

G[BB; Suwm 3_ = >\° exp (‘ Eo /‘C) + )\1 exp(-E1/T) + >\2 exp(‘Ez/t>

NY= N2ty = AeslE/T) +32Az exp(“E, /)

Msfnj Prokahllib = Gibbs ;ﬂﬁ‘ﬂ/gl we  have

s = Aexe(E/DE U enCa/T)

X:E
3_ y



Problem 4

Consider an ideal monatomic gas in a two-dimensional space. There
are N atoms in a square of area A = L2 . The temperature is T. You
may use the facts that the single-particle states are identified by two
indices ny and ny, each of which is greater than er—egmat=w 0, and
that the energy of such a state is E = C[(nx)2 + (ny)2]/L2 , where

C is a constant.

(a) Find the chemical potential [Remember, use the classical limit
for

the occupancy].

(b) Find the total energy.

(c) Find the entropy.
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Problem 5§

Consider a system of N bosons of spin zero. Assume there are two
single-particle orbitals, and they have energies are 0 and E. Find the
temperature at which the occupation of the lower orbital is twice
that of the higher orbital. Assume N >> 1.
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Problem 6

An ideal refrigerator is used to pump heat from an object to a high-
temperature reservoir at temperature Tp. The heat capacity of the
object is a function of temperature: C = a Tb, where a and b are
positive constants. If the object is initially at temperature T; < Ty,
how much work is necessary to cool it to Ti/2 ?
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Problem 7

In class, we calculated the pressure as a function of altitude for an

isothermal atmosphere.

it to estimate the pressure at an altitude of 5000m.

Explain how this result was derived, and use

Use the

following approximate values (for the purposes of this problem,
assume these numbers have three-digit accuracy):

the average mass of air molecule = 5x10-26kg, T = 300K, g = 10m/s2,

latm =

100000Pa.

1.38x10-23 J/K.

The value of the Boltzmann constant is

Use the above result to estimate the temperature of boiling water
at 5000m. Use a value of 2300J/g for the heat of vaporization of

water.

Avogadro's number is 6.02x1023 mol-1,

Assume a water

molecule has a mass of 18 times 1.67x10-27kg.
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