EE 120 SIGNALS AND SYSTEMS, Fall 2012

Midterm # 2, November 5, Monday, 10:10-11:50 am

Name SOLUTIONS

Closed book. Two letter-size cheatsheets are allowed. Show all your work. Credit will be given for partial answers.

		Grade	9
Problem	Points	Score	
1	20	45	V
2	20	KS	
3	20	MA	
4	20	45	
5	20	KS	
Total	100		

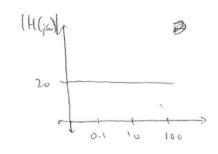
1. Given the frequency response:

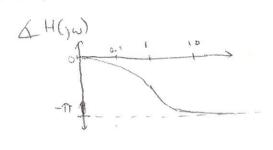
$$H(j\omega) = 10\frac{1 - j\omega}{1 + j\omega}$$

- a) (5 points) Sketch the Bode plot, labeling the relevant frequencies, and magnitude and phase values.
 - b) (5 points) Give an exact expression for the phase delay.
 - c) (5 points) Give an exact expression for the group delay.
 - d) (5 points) Determine the response of the system to the input $x(t) = \cos(t)$.

(a)
$$20 \log |H(j\omega)| = 20 + \log \left(\frac{|I-j\omega|}{|I+j\omega|}\right) = 20$$

 $\leq H(j\omega) = \leq \left(\frac{1}{|I+j\omega|}\right) + \leq (1-j\omega) = -2 + an^{-1}(\omega)$





(b)
$$\tau_{g} = -\frac{\Delta H(j\omega)}{\omega} = \frac{2 + \alpha n^{-1}(\omega)}{\omega}$$
.

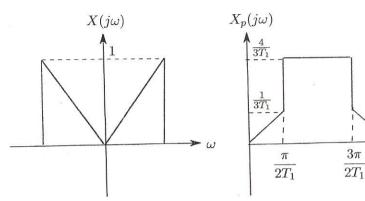
(c)
$$c_g = -\frac{d\Delta H(j\omega)}{d\omega} = \frac{1}{1+\omega^2}$$

(d)
$$x(t) = \frac{1}{2}(e^{it} + e^{-jt})$$

 $y(t) = \frac{1}{2}H(j(i))e^{jt} + \frac{1}{2}H(j(i))e^{-jt} = \frac{10}{2}(\frac{1-i}{1+j}e^{-jt})$
 $= \frac{10}{12j}(2e^{it} - 2e^{-jt})$ $2 = [0 sin(t)].$

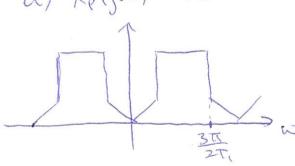
Alt.
$$\tau_{p}(1) = 2 t_{an}^{-1}(1) = \frac{\pi}{2}$$
. $y(t) = |H(j)| \cos(t - \tau_{p} \cdot 1) = 10 \cos(t - \frac{\pi}{2})$
= $10 \sin(t)$.

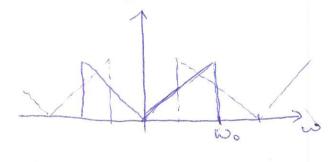
2. A continuous time signal x(t) with the spectrum $X(j\omega)$ depicted below is impulsetrain sampled with period T_1 . One period of the resulting spectrum $X_p(j\omega)$ is shown below.



- a) (10 points) Determine the largest sampling period T_2 that would avoid aliasing, and express it in terms of T_1 .
- b) (10 points) Sketch the spectrum $X_p(j\omega)$ for each of the following two sampling periods: (i) $T = T_2$, (ii) $T = 2T_2$.

a) Xp(jw) results from aliasing:





 2π

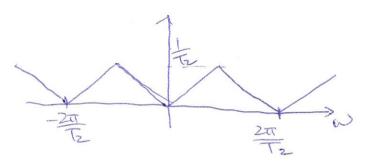
 $\overline{T_1}$

by inspection that X(jw) is bound limited to

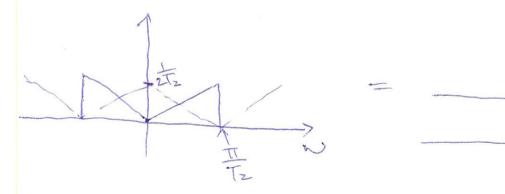
·. Choose = 2x 3T = 7z = 3T1

Additional workspace for Problem 2

b) T=Tz -> no aliasing



T = 2Tz > copies at Tz

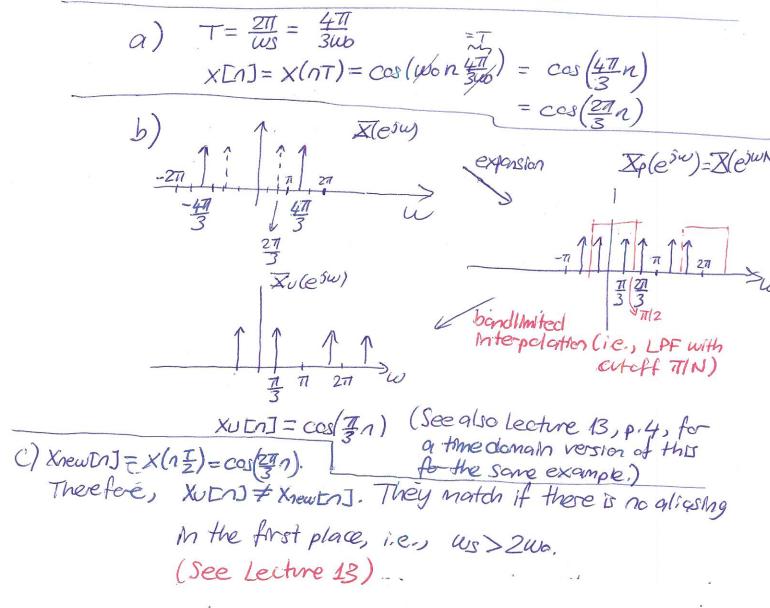


3. The continuous-time signal:

$$x(t) = \cos(\omega_0 t)$$

is sampled with frequency $\omega_s = \frac{3\omega_0}{2}$.

- a) (5 points) Determine the resulting discrete-time signal x[n].
- b) (8 points) Suppose x[n] is upsampled with N=2 (that is, expanded in time by a factor of N=2 and the missing samples are obtained from the existing ones with bandlimited interpolation). What is the resulting signal $x_u[n]$?
- c) (7 points) Suppose now x(t) is sampled with frequency $2\omega_s$. Do the samples match $x_u[n]$ in part (b)? For which values of ω_s would sampling followed by upsampling with N generate the same result as sampling with rate $N\omega_s$?



4. a) (15 points) Find the right-sided signal x(t) whose Laplace transform is:

$$X(s) = e^{-s} \frac{(s+1)^2}{s^2 - s + 1}$$

b) (5 points) Find the unilateral Laplace transform for
$$x(t)$$
 in part (a).

(a) Consider the term $\frac{(s+1)^2}{s^2-s+1}$. Rewrite using long division:

$$s^2-s+1 \frac{1}{s^2+ls+1} \implies = \frac{1}{s^2-s+1} + \frac{3s}{s^2-s+1}$$

Write partial fraction expansion:
$$(s-\frac{1}{2})^2 = -\frac{3}{4}$$

$$(s-\frac{1}{2})^2 = -\frac{3}{4}$$

$$\Rightarrow s = \frac{1}{2} \pm i\frac{\sqrt{3}}{2}$$

$$\Rightarrow s$$

We got:

$$\delta(t) + \left[\left(\frac{2}{2} - i\frac{\sqrt{3}}{2}\right) e^{\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)t} + \left(\frac{3}{2} + i\frac{\sqrt{3}}{2}\right) e^{\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)t}\right] u(t)$$

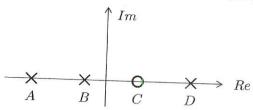
$$= \delta(t) + \left[e^{\frac{1}{2}} \left[3\cos\left(\frac{\sqrt{3}}{2}t\right) + \sqrt{3}\sin\left(\frac{\sqrt{3}}{2}t\right)\right] u(t)$$
Using fact that $\chi(t-t_0) \in \mathbb{Z} \to e^{-st_0}\chi(s)$, we have

$$X(t) = 8(t-1) + (e^{\frac{t-1}{2}})(3\cos(\frac{\sqrt{3}}{2}(t-1)) + \sqrt{3}\sin(\frac{\sqrt{3}}{2}(t-1)))u(t-1).$$

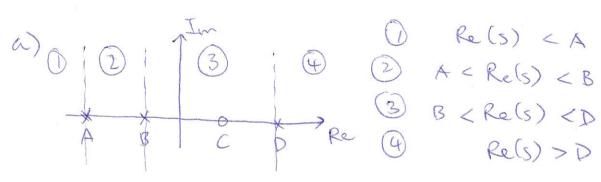
Additional workspace for Problem 4.

(b) Because X(t) is (strictly) causal, its unflateral and bilateral Laplace transforms are equal. Thus $X(s) = e^{-s} \frac{(s+1)^2}{s^2-s+1}$

5. A LTI system has a rational transfer function with the pole/zero pattern below:



- a) (10 points) Indicate all possible regions of convergence (ROC) that can be associated with this pattern.
- b) (10 points) For each ROC identified in part (a), determine whether the system is stable and/or causal.



6)		Causal?	Stable?
		X	X
	2	X	×
	3	*	
	4	✓	X