
1 Problem 1

1.1 Part a

We want to find the lengths of the two rods given the initial lengths, a change in temperature, and their
coefficients of linear expansion. To do this, we use the formula ∆l = l0α∆T , so that the final length is given
by lf = l0(1 + α∆T ).

If we plug in the numbers, for steel we have an initial length of 98 cm, an expansion coefficient of
12 × 10−6/◦C, with a temperature change of 1000◦C - 200◦C = 800◦C. This gives a final length of 98.94
cm (once rounded). For quartz, the temperature change is the same, the initial length is 100 cm, and α is
0.4 × 10−6/◦C. This gives a final length of 100.032 cm.

1.2 Part a rubric

Part a was graded out of 8 points, with 4 points given for each calculation. These broke down to 3 for the
formula and 1 for plugging in numbers. If there were mistakes with numbers for both calculations, it was
-2 total, but mistakes in the formula were deducted from the total, rather than by problem. The amount
deducted was greatest for mistakes with the wrong units, such as l = l0 + α∆T , since the second term does
not have units of length. Large deductions were also given for saying that the final length of the rod was
l0α∆T , which is the change in the length. A small deduction (1 pt total) was given for providing only the
change in length, and not the total final length, if the result was correctly labeled as the change.

1.3 Part b

This part asks whether the two solid rods can ever be the same length. There are actually several possible
solutions. The following explanations are (much) longer than they would need to be on the exam, just to
ensure that the reasoning is clear.

The easiest solution is as follows: The first step is to note that the steel starts off shorter than the quartz
and also changes length more readily with change in temperature, so that the steel will shrink more than the
quartz if they are cooled, and thus that if they are the same length, the temperature at which this occurs
must be larger than the initial temperature. Next, we note that the steel rod melts first, and since the
expansion is linear, it suffices to consider the lengths of the two rods at the melting point of steel. When
we do so, we find that the steel rod is still shorter, which means that it must have been shorter at all lower
temperatures as well. (In fact, the steel rod at its melting point is shorter than the length of the quartz rod
at 0K if the formula still applied there, which it presumably does not.) So there is no temperature below
the melting point of steel where the two rods could have been the same temperature, and furthermore, since
the steel rod is shorter before it melts, the portion of it that remains solid could never be the same length
as the quartz rod while it is melting (more on this below). Therefore the solid rods are never the same
length.

The second solution (and the one most commonly given on the exam) is to solve explicitly for the
temperature where the lengths would be equal, assuming the rods stayed in the solid phase. To do this, one
sets

l0,q(1 + αq∆T ) = l0,s(1 + αs∆T )

and then solves for ∆T , getting:

∆T =
l0,q − l0,s

l0,sαs − l0,qαq

Plugging in the numbers gives about 1760.6◦C. Recalling that ∆T = Tf − T0, we get a final temperature
of Tf = 1960.6◦C. This is above both melting points, so we believe the answer is no, but there is one more
thing that I think needs to be said, which most people omitted. Namely the steel rod melts first and is
shorter at its melting point (no calculation needed here because at any T between T0 and Tf , the steel rod
must be shorter, and we’ve already calculated that Tf is above the melting point of steel). But this means
that as the steel melts, the portion of it that is in the solid phase will always be at least as short as the
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whole rod just before melting, and therefore shorter than the quartz rod. This may not seem important, but
if I replaced quartz by an imaginary material with the same α and same initial length, but a lower melting
point (below that of steel), then I would find that the solid lengths could be the same at some point while
that imaginary material is melting.

Finally, the second solution can be modified to be substantially easier, calculation-wise. We observe
from part a that the difference in lengths was reduced by 0.91 cm due to a temperature increase of 800
degrees. This means that a temperature increase of 1600 degrees would reduce the difference in length by
less than 2 cm, not enough to close the gap between the initial lengths. But even ∆T = 1600◦C puts the
final temperature above both melting poins. From there, proceed as in solution 2.

1.4 Part b rubric

This question was worth the remaining 12 points. For solution 1, leaving out parts of the argument could
result in small deductions, but people with the core argument that steel remains significantly shorter all the
way to its melting point received full points. (I was very slightly more lenient with explanations for this
answer, to reward the fact that it relies more heavily on physical understanding rather than mathematical
manipulation.)

For the second answer, having the right formula at the beginning was worth 8 of the 12 points, although
if it was then misapplied, some of these points were deducted. For instance: if in manipulation the formula
was accidentally changed to a form where the units do not match up (such as l0 + ∆T ), that was a 2 point
deduction since units are important, and if the final ∆T was then used to calculate both T0 + ∆T and
T0 − ∆T , that was also a 2 point deduction (since ∆T is defined as Tf − T0). Problems with the initial
formula were larger deductions, typically 4 pts off.

The final number for Tf was then worth 1 point (this includes all mistakes with numbers, except for
plugging in the wrong initial temperatures, which shows a more fundamental lack of understanding and was
worth -2 points), having the correct conclusion based on the calculated temperature was an additional 1
point, and the explanation was 2 points, including 1 for the discussion of the lengths while the first one is
melting. (Most people did not get this last point, and I would probably not have included it had I seen
more exams before making my rubric, but the same standard applied to everyone, so it should not affect
the curve.) Of these last 4 points, any final answer that viewed a temperature below 0 Kelvin as valid
automatically lost all 4, and a temperature between the initial temperature and 1000 degrees automatically
lost 2 (since you should know from part a that such an answer is not correct).

1.5 Other notes

Finally, I want to point out the most common mistakes to watch out for. First, 100 cm is 1 m, not 0.1
m. This was a surprisingly common mistake. Second, there were a lot of ridiculous numbers, like 80000 K,
50000000 K, and so forth. These are really ridiculous numbers, although I only took off 1 point for them
since there is not any obvious physical reason why they are not possible answers. Still, you should recognize
that such an answer must be incorrect. Next, it’s much easier to get the right numerical answer to a problem
if you plug in numbers when your equation looks like ∆T = something, rather than when it still has the
variable you’re solving for on both sides of the equation. Finally, please have a clear final answer. Some
people arrived at the correct conclusion for part b, but the word “no” never appeared in the answer.
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Problem # 4
a)

dQ

dT
=
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)
(T − T1) = 0.99

L(T − 20)
D

b)

dQ
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=

(
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)
(T2 − T ) = 0.24

L(−20− T )
D

c)
Set the previous answers equal as heat flow rate in equals the rate out and solve
for T: (

k12L

2D
+
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2D

)
(T − T1) =

(
k35L

D

)
(T2 − T )(

2k1 + 3k2

2
+ 5k3

)
T = 5k3T2 +

2k1 + 3k2

2
T1

T =
10k3T2 + (2k1 + 3k2)T1

2k1 + 3k2 + 10k3
= 12.195◦C
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