
Electrical Engineering 42/100 Department of Electrical Engineering and Computer Sciences
Summer 2012 University of California, Berkeley
Instructor: Tony Dear

Midterm Exam Solutions

1. Answer ALL the questions!

(a) (5 points) In the following circuit, we pass an input signal through a current amplifier. Evidently, it
is nonideal with finite input and output impedances. The output is attached to a load RL = 1 kΩ.

+12 V

100 Ω

20 Ω
vin

iin

vout

iout

50iin
4 kΩ 1 kΩ

+

−

+

−

i. Calculate the power Pin at the input of the amplifier.

vin =
20

100 + 20
× 12 V = 2 V

Pin =
v2

R
=

22

20
= 0.2 W

ii. Calculate the power Pout at the output of the amplifier.

iin =
12 V

100 + 20
= 0.1 A

iout =
4

1 + 4
× 50iin =

4

5
× 5 = 4 A

Pout = i2R = 42 × 1 kΩ = 16 kW

iii. What is the power gain G of the amplifier?

G =
Pout
Pin

=
16 kW

0.2 W
= 80000
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(b) (10 points) Consider the following circuit.

+20 V

10 Ω

4 F

12 F

3 H

12 F

4 F

2 A

5 Ω

i. Simplify the circuit by applying all possible series and parallel combinations to any resistors,
capacitors, inductors.

20 V

10 Ω

6 F 3 H 2 A

5 Ω

ii. Assuming DC steady state, calculate the powers of the sources and state whether each is sup-
plying or absorbing energy.

At DC steady state, capacitor is treated as open circuit and inductor is treated as short circuit.

For the voltage source: P = V I = 20×−20

10
= −40 W, supplying

For the current source: P = V I = −5× 2× 2 = −20 W, supplying

iii. Find the energy stored in the inductor assuming DC steady state conditions.

At DC steady state, inductor is fully charged. The total current going through inductor
is

i =
20

10
+ 2 = 4 A

E =
1

2
LI2 =

1

2
× 3× 42 = 24 J
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(c) (10 points) Consider the following RLC circuit. The capacitor is initially uncharged.
Express all results below in terms of the given circuit parameters.

+Vs

t = 0

R C

L

vC (t)
+

−

i. Derive the ODE governing vC(t) for t > 0 (Vs is a DC source).

KCL at vc:

C
d(vC(t)− 0)

dt
+
vC(t)− 0

R
+

1

L

∫
(vC(t)− Vs)dt = 0

dvC(t)

dt
+
vC(t)

RC
+

1

LC

∫
(vC(t)− Vs)dt = 0

d2vC(t)

dt2
+

1

RC

dvC(t)

dt
+

1

LC
vC(t) =

Vs
LC

ii. Assuming underdamped behavior, qualitatively describe the behavior of vC(t) over time. You
may sketch plots to supplement your explanation.

Note the scale in the figure above is arbitrary.

Underdamped behavior leads to damped oscillations, usually with an initial overshoot followed
by ringing before settling down to a steady-state value.

iii. Find an expression for the energy stored in the capacitor after a very long time.

At DC steady state, capacitor is treated as open circuit and inductor is treated as short
circuit. So,

vC(∞) = Vs

Ecap =
1

2
CVC(∞)2 =

1

2
CV 2

s
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2. OVER 9000!!!

Today you will be helping Jerry design an amplifier circuit to meet some specifications that Tony has
given him (be sure to use only KCL or Jerry will not be very happy).

(a) (1 point) Tony wants as much gain as possible. Since an ideal op amp has infinite open-loop gain,
Jerry does not see why negative feedback would be useful, seeing as it drastically reduces the gain.
Name one benefit of negative feedback, other than the ability to apply the summing-point constraint.

Robustness, Stability, Dynamic input range, etc.

(b) (2 points) Jerry believes you and agrees to use negative feedback configurations. Tony wants a gain
of over -9000, so Jerry confidently designs an inverting amplifier with a gain of -10000, shown below.
Help Jerry choose resistor values such that he achieves that gain.

vin
vout

R 1

R 2

This is an inverting op-amp configuration. The gain is simply G = −R2

R1
.

Choosing R1 = 10 Ω, R2 = 100 kΩ;G = −R2

R1
= −100 kΩ

10 Ω
= −10000.
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(c) (4 points) Now Tony comes over and says that the lab only has resistor values between 100 Ω and
10 kΩ due to budget cuts. “No problem!” says Jerry. He decides to add a noninverting stage after
the first amplifier. Choose new values for all resistors so that we still have a gain of over -9000.

v in

vout

R 1

R 2

R 3 R 4

This is cascade of inverting op-amp and non-inverting op-amp. The gain is

G = Ginv ×Gnon−inv = −R2

R1
× (1 +

R4

R3
)

Choosing R1 = R3 = 100 Ω, and R2 = R4 = 10 kΩ, the gain of overall circuit is

G = −R2

R1
(1 +

R4

R3
) = −10 kΩ

100 Ω
(1 +

10 kΩ

100 Ω
) = −10100

Note: Any value of resistors for (a) and (b) is acceptable as long as gain satisfies the requirement.

(d) (2 points) Jerry builds his circuit and finds that it doesn’t work. But of course, he has forgotten
to power the amplifier! He attaches supply rails of ±15 V to both op amps. Using the resistance
values that you chose above, what is the voltage input range for which amplifier operation remains
linear?

−15 V

G
≤ vin ≤

15 V

G

− 15

10100
V ≤ vin ≤

15

10100
V
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v in

vout

R 1

R 2

R 3 R 4

(e) (3 points) Just as Jerry finishes his new design, Tony comes over and says, “Oh btw, the source
resistances for the inputs will be on the order of 10 kΩ.” Find the input resistance of the circuit
using your resistance values and explain why this is problematic.

The input resistance of the amplifier can be found by applying test source at the input,

vtest − 0

R1
= itest, Rin =

vtest
itest

= R1 = 100 Ω

v in

R 1

R 2

R s

We can model the source as shown above. Solving the circuit with SPC and KCL, the gain of the

first stage (inverting op-amp configuration) becomes Ginv = − R2

R1 +Rs
= − 10 kΩ

100 Ω + 10 kΩ
≈ −1.

Therefore, the total gain drops significantly.

(f) (3 points) Tired of the constant spec changes, Jerry ragequits and leaves the problem for Dennis to
fix. Help Dennis rectify the new problem by adding another stage to the amplifier circuit to make
the input resistance as high as possible without changing the gain.

vout

R1

R2

R3 R4

v in

Rs

To solve the problem of impedance matching, we can insert a voltage follower as shown above
(infinite input resistance with a gain of 1, ideally) at the beginning of the circuit. Now the gain is
not affected by the source resistance and stays at -10100. The tradeoff of adding another stage, of
course, is that the circuit now consumes more power and takes up more space.
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3. Probing Thévenin with a Device (twss)

William has stumbled across a mysterious electronic box labeled “LINEAR CIRCUIT INSIDE.” Hearing
a ticking sound coming from inside, he has decided that it would be unsafe to open it up. However, he’s
still very curious about what the circuit looks like inside, so he probes the two terminals sticking out of
the box (for some reason this seemed perfectly okay, even though opening it was not).

LINEAR CIRCUIT INSIDE

+

Vs

1 · vR
vx vR2 Ω

+

−

+

−

a

b

Instead of having a multimeter like normal people, John has the above whack measuring device (shown
on the right). The device can be attached across two terminals of any circuit. The value of Vs can be
twiddled with, and the device will then report the voltage vx.

(a) (12 points) William decides to use John’s device to probe the box. He makes two measurements
and observes the following:

Vs = 5 V→ vx = −3 V

Vs = 6 V→ vx = 0 V

Using this information, help William find the Thévenin and Norton equivalent circuits of the box.

Hint: Pick one equivalent circuit to focus on first. You can get the second one easily afterward.

Because we know the circuit inside is linear, we are able to draw out an equivalent circuit and attach
that to our ”whack” device. This is shown below for a Thévenin device, but you can also do this
for a Norton device.

+

Vs

1 · vR
vx vR2 Ω

+

−

+

−
+Vth

Rth

Now we are able to use nodal analysis to find Vth and Rth. Using a supernode, we get the following
two equations:

vx − Vth
Rth

+
VR
2
− 1 · vR = 0

vx − VR = Vs

Using your two conditions and substituting in the supernode equation, you can get the following
equations:

−3 V − Vth
Rth

+
−8 V

2 Ω
−−8 A = 0

−Vth
Rth

+
−6 V

2 Ω
−−6 A = 0

Your second equation gives you IN =
Vth
RTh

= 3 A , and plugging Vth = 3RTh in, you are able to

get Rth = 3 Ω . Because V = IR, Vth = 9 V .
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More space for part (a)...

+

Vs

1 · vR
vx vR2 Ω

+

−

+

−
IN Rth

Here we will do the Norton equivalent circuit. The two equations from the supernode around Vs is
as follows:

vx
Rth

+
VR
2
− IN − 1 · vR = 0

vx − VR = Vs

From your two conditions, you will get the following equations after substituting in the supernode
equation:

IN +
−3 V

Rth
+
−8 V

2 Ω
−−8 A = 0

IN +
−6 V

2 Ω
−−6 A = 0

As before, you should get, IN = 3 A , Rth = 3 Ω , and Vth = 9 V

The equivalent circuits are shown in the figure below:

9V +

3Ω

3Ω3A

(b) (3 points) While William has only performed two measurements, he now essentially knows the black
box’s current output for any voltage input (or vice-versa). For the references shown below, plot the
box’s i-v characteristic. Label axes, intercepts, and slopes.

i [A]

v [V]
-10               -5                                   5                10

10

5

-5

-10

Vth=9V

-IN=-3Aslope: 1/Rth=1/3 S
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4. What Is This I Don’t Even

In an attempt to troll the students, Dennis has constructed the following monstrosity. Both switches close
at t = 0, and the capacitor is uncharged prior to the switch actions. Assume that the op amp is ideal
with no rail limitations and that negative feedback holds.

5 V 4 H

100 Ω

200 Ω

vo(t)
3 V

0.2 mF

(a) (8 points) Find v+(t) at the noninverting input for t > 0.

Because negative feedback is present, we can apply the summing point constraint. Hence, no current
goes into the noninverting terminal of the op amp, and we simply have our canonical RC charging
circuit. Writing KCL at v+(t) gives us

v+(t)− 3

200
+ 0.2× 10−3

dv+(t)

dt
= 0

v+(t) + 0.04
dv+(t)

dt
= 3 (1)

Hence, the time constant for the complementary solution is τ = 0.04. Notice that our particular
solution is f(t) = 3, so the particular solution is a constant. Our full solution assumes the form

v+(t) = Ke−t/τ +A (2)

We apply the usual boundary conditions to solve for the constants. Before the switch closes, the
capacitor is uncharged, so we infer that v+(0) = 0. After a long time, the capacitor becomes an
open circuit in DC steady state, so v+(∞) = 3 from the input source. Hence,

v+(0) = 0 = K +A

v+(∞) = 3 = A

Solving for both constants gives us the solution

v+(t) = 3(1− e−25t) V (3)
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5 V 4 H

100 Ω

200 Ω

vo(t)
3 V

0.2 mF

(b) (3 points) Write an equation for vo(t) in terms of v−(t), the voltage at the inverting input.

We apply KCL at the inverting input and rearrange to obtain an expression for vo(t). Be careful of
the limits of the integral!

1

4

∫ t

0

v−(t)− 5 dt+
v−(t)− vo(t)

100
= 0

vo(t) = 25

∫ t

0

v−(t)− 5 dt+ v−(t) (4)

(c) (6 points) Use your results from (a) and (b) to solve for vo(t).

The summing point constraint tells us that v+(t) = v−(t), so we can plug our solution from Eqn 3
into the above expresssion 4 for vo(t).

vo(t) = 25

∫ t

0

3(1− e−25t)− 5 dt+ 3(1− e−25t)

= 25

(
−2t+

3e−25t

25

)∣∣∣∣t
0

+ 3(1− e−25t)

= −50t+ 3e−25t − 3 + 3− 3e−25t

vo(t) = −50tV (5)
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5 V 4 H

100 Ω

200 Ω

vo(t)
3 V

0.2 mF

(d) (4 points) Does v−(t) ever reach a steady-state value? If so, find the value; if not, explain why this
circuit does not allow for this to happen.

Yes, it does. By negative feedback and the summing point constraint, the voltage v− must be
equal to the voltage v+. We know that v+(t) reaches a steady state value from Eqn 3, so v−(t)
must also reach the same value at 3 V.

(e) (4 points) Does vo(t) ever reach a steady-state value? If so, find the value; if not, explain why this
circuit does not allow for this to happen.

No, it does not. Notice from our expression for vo(t) from Eqn 5 that it is a linearly decreas-
ing term as time goes to ∞. This can be understood from the constant voltage drop across the
inductor, hence leading to a linearly ramping current across it and to the output node. Because
current across the 100-Ω resistor is ramping as well, vo(t) never reaches a steady state value.
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5. Not Sure If Wrong Figure... Or If GSIs Just Got Lazy

John takes Dennis’s circuit and replaces the input voltages with sinusoidal sources, both with frequency
ω = 25 rad/sec. He also wants to find vo(t), though he doesn’t care about the transient response.

5 cos(25t) V 4 H

200 Ω

100 Ω

vo(t)
3 cos(25t) V

0.2 mF

(a) (5 points) Help John thwart Dennis’s ODE trolling plan by redrawing the circuit with all elements
converted to the phasor domain.

Converting to the phasor domain, we have

V 1

V 2

V o

j 100

− j 200

100

200

where V1 = 56 0 and V2 = 36 0
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(b) (7 points) Dennis accidentally lets slip that this amplifier is actually a difference amplifier, though
with impedances instead of resistances. John takes the opportunity to redraw the circuit as follows:

V1

V2

Vo

Z1

Z2

Z3

Z4

Show that the gain for a general difference amplifier is

Vo =

(
Z4

Z3 + Z4

)(
Z1 + Z2

Z1

)
V2 −

(
Z2

Z1

)
V1

Since this is a summing and difference amplifier, we will use superposition as described in lec-
ture. First we will turn off V2. Therefore, by the summing point constraint, the nodal voltage at
both terminals become 0 V, as shown.

V 1
V o

Z 1

Z 2

Z 3

Z 4

0

0

0

This is simply an inverting amplifier. Therefore, the contribution from V1 to V0 is determined to
be:

V02 = −V1
Z2

Z1

Next, we will turn off V1.

V 2

V o

Z 1

Z 2

Z 3

Z 4

0

V x

V x
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We recognize that this is a non-inverting amplifier and therefore the gain is determined to be:

V01 = Vx

(
1 +

Z2

Z1

)
where Vx is the nodal voltage at both the inverting and non inverting terminal by summing point
constraint. Therefore, by voltage divider, it is:

Vx = V2

(
Z4

Z4 + Z3

)
Therefore, the contribution made by V2 is:

V02 = V2

(
Z4

Z4 + Z3

)(
1 +

Z2

Z1

)
We can also arrive at this expression had we done KCL at the inverting terminal.

As a result, the output voltage is the sum of these two sources’ contributions by superposition. The
final expression for output is:

Vo =

(
Z4

Z3 + Z4

)(
Z1 + Z2

Z1

)
V2 −

(
Z2

Z1

)
V1 (6)
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V1

V2

Vo

Z1

Z2

Z3

Z4

Vo =

(
Z4

Z3 + Z4

)(
Z1 + Z2

Z1

)
V2 −

(
Z2

Z1

)
V1

(c) (4 points) Using the gain given above, derive an expression for Vo, the phasor form of vo(t).

Plugging in the complex impedances from part (a), we get:

Vo =

( −200j

200− 200j

)(
100j + 100

100j

)
V2 −

100

100j
V1

=

( −j
1− j

)(
j + 1

j

)
V2 −

1

j
V1

= −
(

1 + j

1− j

)
V2 + jV1

= −
(

1 + j

1− j

)
×
(

1 + j

1 + j

)
V2 + jV1

= −
(

2j

2

)
V2 + jV1

= j(V1 −V2)

=
(

16
π

2

)
(56 0− 36 0)

= 26
π

2

(d) (4 points) Perform the final conversion back to the time domain to obtain an expression for vo(t).

The phasor represents a scaled and shifted version of cos(ωt).

vo(t) = 2 cos(ωt+
π

2
)

= 2 sin(ωt+
π

2
+
π

2
)

= 2 sin(ωt+ π)

= −2 sin(ωt)
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