E7 Midterm Examination II

Friday November 20, 2009

	Name :						
	SID :						
Section	: 1	2	(Please	circle your lecture section)			
Please m	ark your L	aboratory section:	(where	your exam will be returned)			
□ 11:	TuTh 8-1	0 (1109 Etch)	□ 12:	TuTh 10-12 (1109 Etch)	□ 13:	TuTh 12	2-2 (1109 Etch)
□ 14:	TuTh 2-4	(1109 Etch)	□ 15:	TuTh 4-6 (1109 Etch)	□ 16:	MW 8-10	(1109 Etch)
□ 17:	MW 10-12	(1109 Etch)	□ 18:	MW 2-4 (1109 Etch)	□ 19:	MW 4-6	(1109 Etch)
□ 20:	MW 2-4 (2109 Etch)	□ 21:	TuTh 10-12 (212 Wheeler)	□ 22:	TuTh 12	2-2 (2109 Etch)
□ 23:	TuTh 8-1	0 (212 Wheeler)	□ 24:	MW 3-5 (212 Wheeler)			

Part	Points	Grade
1	12	
2	10	
3	20	
4	16	
5	12	
6	18	
7	12	
TOTAL	100	

- 1. Write your name on each page.
- 2. Record your answers **ONLY** on the spaces provided.
- 3. You may <u>not</u> ask questions during the examination <u>nor</u> leave the room before the exam ends.
- 4. Close book exam. Two $8.5^{"}\times11^{"}$ sheets of handwritten notes allowed.
- 5. No calculators or cell phones allowed. (Please turn cell phones off)

1. The graph of the polynomial function

$$f(x) = x^3 - 2x^2 - 2x + 3$$

is shown below. Its derivative is $\frac{d}{dx}f(x) = 3x^2 - 4x - 2$.

(a) Assume that you are using the bisection algorithm to find a root of f(x) and that the initial search interval is $[x_L, x_R] = [-2, 3]$. In the space provided below write down the value of the root that the algorithm will find, by reading its approximate value from the graph 1 .

Ans:

(b) Assume that you are using the Newton-Raphson algorithm and that the initial root estimate is $x_0=0$. Compute numerically (not graphically) the value for x_1 , the root estimate after the first iteration of the algorithm is completed.

 $x_1 =$

(c) Write down the value of the root that the Newton-Raphson algorithm will find, if the initial root estimate is $x_0 = 2$, by reading its approximate value from the graph.

Ans:

¹Write your answer with only two significant figures, e.g. 2.3, when reading values from the graph.

2. Let x_1 , x_2 , x_3 , and x_4 be the unknown test scores of the four students Erin, Tina, Jack and Ben respectively and denote the vector x as

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$
 where
$$\begin{array}{c} x_1 \text{ represents Erin's Score} \\ x_2 \text{ represents Tina's Score} \\ x_3 \text{ represents Jack's Score} \\ x_4 \text{ represents Ben's Score} \, . \end{array}$$

Suppose that you are asked to determine the values of the elements of x given the following information:

- Erin scored 30 points higher than Jack.
- Tina's score is equal to 18 plus the average of Jack and Ben's scores.
- Jack scored 23 points less than the average of Erin and Ben's scores.
- The average of the four scores is 78.
- (a) Determine the matrix A and vector b so that x can be determined as the solution of Ax = b:

$$A = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$
 $b = \begin{bmatrix} & & \\ & & \end{bmatrix}$

(b) Given that rank(A) = 4, circle the correct statement below:

An exact solution of Ax = b exists does not exist

3. Fig. 1 plots the monthly temperatures of the city of Tucson for two years. The plot was generated using the 24×1 (column) arrays shown below

Figure 1: Tucson Temperatures for two years

Suppose we want to fit the data to the following equation (with **3 basis functions**) using least squares regression.

$$\hat{y}(x) = p_1 f_1(x) + p_2 f_3(x) + p_3 f_3(x). \tag{1}$$

It is believed that the general trend of the data, apparent from Fig. 1 is genuine. Based on this belief, which of the proposed basis functions, given as anonymous functions in the 1×6 cell array BF (shown below) would you consider necessary in order to obtain a good fit?

```
begin code

BF = [ { @(x) ones(size(x)) } , { @(x) x } , { @(x) exp(x) } , . . .

{ @(x) x .* x } , { @(x) cos(pi/6*x) } , { @(x) sin(pi/6*x) } ];

end code
```

(a) Select the three function handles that you would use to perform the regression by specifying the indexes below:

ANS: BF{ } BF{ } BF{ }

(Problem continues on the next page)

(b) Complete the missing lines of code (shown as dashed lines) of the script shown below, which generates Fig. 2 shown below.

Figure 2: Regression for Tucson Temperatures for two years

- Assume that arrays Xvec and Yvec and the cell array BF in the previous page have been created.
- Using the three function handles you have chosen:
 - Determine the optimal coefficient vector p as the solution to the least squares problem
 - Generate the function handle yh to the function $\hat{y}(x)$ in Eq. (1).
- Plot the data points and the regression function evaluated at the values in Xvec on the same figure.

begin code
% 1) Create the A matrix to perform least squares regression
A =
% 2) Obtain the optimal coefficient vector p
p =
% 3) Create the function handle
yh =
% Create plot
plot(x ,y, 'o',); grid on
end code

4. The recursive function Bin2dec, has the following syntax:

$$y = Bin2dec(BA)$$

- BA is a $1 \times n$ array of binary digits (i.e. 0's and 1's) e.g. [1010].
- y is the decimal value of the number represented by the array of binary digits.

Examples:

- Bin2dec([1 0]) returns 2.
- Bin2dec([1 1]) returns 3.
- Bin2dec([0 1 1]) returns 3.
- Bin2dec([1 0 1 0]) returns 10.

Complete the 2 missing lines of code below:

Non-recursive solutions will not receive credit!

```
begin code

function y = Bin2dec(BA)
n = length(BA);

if n == 1

y =

else

y =

end

end code
```

5. Consider the function $f(x)=\frac{1}{8}x^4-\frac{7}{12}x^3-\frac{1}{8}x^2+\frac{31}{12}x$. For your convenience, the table below lists some values.

x	0	1	2	3	4
f(x)	0	2	2	1	3

In this problem, we will consider two different approaches to compute

$$\int_{0}^{4} f(x)dx.$$

The exact value of the integral is $6\frac{4}{15}\approx 6.2667.$

(a) Use Simpson's rule to estimate the value of the integral 2 .

Answer:

(b) Use the composite trapezoid rule with 4 subdivisions of $\left[0,4\right]$ to estimate the value of the integral.

Answer:

 $^{^2}$ Simpson's rule uses only 3 function evaluations (i.e. no subdivisions of [0,4])

6. (a) Given 4 data points (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , (x_4, y_4) satisfying $x_1 < x_2 < x_3 < x_4$, there is a unique cubic polynomial c(x) that passes through all four points 3 , i.e.

$$c(x_i) = y_i \text{ for } i = 1, \dots, 4.$$

True or False: The cubic-spline interpolation for these same four data points, which also passes through all data points, has the same values as the polynomial c(x) for all values of x between x_1 and x_4 .

Write "True" or "False":

- (b) A cubic spline is fit through **6 points**, $(x_1, y_1), (x_2, y_2), \ldots, (x_6, y_6)$ satisfying $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$. This yields 5 cubic polynomials:
 - f_1 is valid in the interval $[x_1 \ x_2]$,
 - f_2 is valid in the interval $[x_2 \ x_3]$, and so on, until
 - f_5 is valid in the interval $[x_5 \ x_6]$.
 - i. True or False: The coefficients of the polynomial f_2 depend on the value of y_3 .

Write "True" or "False":

ii. True or False: The coefficients of the polynomial f_1 depend on the value of y_6 .

Write "True" or "False":

- iii. A new cubic spline is created, using only the first 5 data points, $(x_1, y_1), (x_2, y_2), \ldots, (x_5, y_5)$. This yields 4 cubic polynomials:
 - ullet g_1 is valid in the interval $[x_1 \ x_2]$,
 - g_2 is valid in the interval $[x_2 \ x_3]$, and so on, until
 - g₄ is valid in the interval [x₄ x₅].

True or False: Since $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) are unchanged, it must be that the polynomial f_1 equals the polynomial g_1 .

Write "True" or "False":

(Continues on the next page)

³This fact was proven in class.

(c) Given n data points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ with $x_1 < x_2 < \dots < x_n$.

Define a quadratic-spline interpolation as follows:

- quadratic polynomial f_1 is valid in the interval $[x_1 \ x_2]$,
- quadratic polynomial f_2 is valid in the interval $[x_2 \ x_3]$ and so on.

The polynomials are required to satisfy the following constraints:

- the value of $f_1(x_1) = y_1$
- the value of $f_{n-1}(x_n) = y_n$
- at the intermediate points, the polynomials must pass through the data points, and the slopes of joining quadratics must be equal, i.e.

$$f_{i-1}(x_i) = f_i(x_i) = y_i$$
 $f'_{i-1}(x_i) = f'_i(x_i)$ for $2 \le i \le n-1$.

Circle the right answer: There are:

- too few
- · too many
- the right number

of *constraints* to uniquely determine **all** the coefficients of the interpolating quadratic polynomials.

Explain your reasoning below.

7. Find the error in the following proof that "all horses are the same color" 4.

CLAIM: In any set of h horses, all horses are the same color.

PROOF: By induction on h:

Base Case: For h = 1. In any set containing just one horse, all horses are clearly the same color.

Induction step: For $k \ge 1$ assume that the claim is true for h = k and prove that it is true for h = k + 1. Take any set H of k + 1 horses. We will now show that all the horses in this set are the same color:

- ullet Remove one horse from this set to obtain the set H_A with just k horses. By the induction hypothesis, all the horses in H_A are the same color.
- ullet Now return the removed horse and remove a different one to obtain a new set $H_{\scriptscriptstyle B}$ with just k horses. By the same argument, all the horses in $H_{\scriptscriptstyle B}$ are the same color.
- Since H_A and H_B have some overlapping horses, it must be that all the horses in H must be the same color, and the proof is complete.
- 1. Carefully follow the induction steps of the proof when going from two horses to three horses and indicate if there is a step in the proof which is invalid (i.e. start by assuming that, in any set of two horses, all horses are the same color):

Answer:

2. Carefully follow the induction steps of the proof when going from one horse to two horses and indicate if there is a step in the proof which is invalid (i.e. start from the obvious fact that, in any set of one horse, all horses are the same color):

Answer:

⁴From Sipser, Theory of Computation, 1997.