noP >
0. .-©
- ’)\\ ﬁozs d
&S ¢
ol
QX“"'NL

Question 1: Potpourri (19 points, 30 minutes)

a) Decide whether each of the following statements is True or False. | Pt sy

The MIPS instruction addiu will sign-extend the immediate to 32 bits.)<

b Peeted

Every different MAL instruction assembles to a distinct binary encoding. pee b intrd

F
E
1) " @) If a label is never jumped to, it is not needed in the linking stage (, 1n fr.
@ Like Two’s Complement, Floating Point has more negative values than
positive Coma apmy (s,)n bir 0~ ar 0(-6)
V) QI) F It is the Caller’s responsibility to save temporary registers before making a
functioncall. £ . <0 Wi\ dwiry regskls

b) For each of the numbered statements (i-v) below, choose the letters of the cache parameter
changes that definitely achieve the named outcome. There may be more than one letter for each

statement. Z PVJ Ay N

A) Adding a unified L2 cache, which is larger than L1 but smaller than memory
B) Increasing block size while keeping cache size constant

C) Increasing associativity while keeping cache size constant

D) Increasing cache size while keeping block size constant.

i) Definitely increases number of tag bits used (for L1 cache) ke
ii) Definitely increases number of index bits used (for L1 cache) Q
iii) Definitely increases number of offset bits used (for L1 cache) A
iv) Definitely decreases L1 miss penalty A | i SSeny
v) Definitely increases L1 hit time ()] T AN
0r otra
oNne

¢) We have extracted 4 bytes of data from 3 files of distinct file types (left column). By drawing
arrows, match each data with the program in the right column that would take as input the file that

the data is from. o o
rd {') ¥ W/ L s “LJ-\. r

U O.\Cui}f—cb/‘ » (Q}(aiv r,td"'.;.’.J,Mn?bLO‘)‘ .E_”S/,.é
™~ 0x08013F00 Compiler 7 P¥s @
\ st v RIS
e, o tlrl

0x0c000000

- Linker LA 8 L
/\ ore § wiboeds

OxQ_D_g_l_6_9§_E_ Loader
(A

jel 0x0 LIT Cor

AAN I
Target o3 i | :
(\‘Zk Yot Compller Tdk,"';‘\ ot -
/050‘\“3‘ LU)‘ﬂ Hexy ! f

\
|r\\l’\"/"‘~ &M’)

) ,»
wa{ﬁ_\o) // G (\kff

Question 2: Sum Things Up With This Question (10 points, 15 minutes)

1% 3L Y42
a) What is the value in decimal of 0b10100110 in each representation? \ PN . Lo b
0boloipol
Nne atr
unsigned ' 66 b .
one’s complement - sk
y i“,({ a a 9 éne
two’s complement -90 an HUL /
sign and magnitude 3\2
q
floating point exponent léé 427 =89 ", 23
———

B a2

T Avert’ ir
i B R T S biaS
WAS 3 A
b) Circle the cases in which using unsigned addition will yield the correct summation value when
the arguments and the result are interpreted in the following number representations. Ignore
overflow cases. Zfﬂ P PP 7 I

e
Of’“:‘,k..; cal,

one’s complement | adding positive integer arghments | adding negative integer arguments
two’s complement | ad positive integer arguments | adding negative integer arguments

ol T
sign and magnitude | adding p@gumems adding negative integer arguments

\ :

/\ v't' N Ll EFerencl,
Wit
gkr\Sl"’\‘L 6@ o\
addf bien be N ‘\UOOOOJ,
F!f(/grr’\ Repress~bativn O: ‘Occué‘
PEhet of posi HiuL % 5
G L e ﬁn.kay”‘_ Cir 0 000
Qackh of Vhofe
S o~

al ECor w\,\/awl Dbt W)

{1 \l‘)
adbitie” *’\‘):l__,,

e
0% \\\\ (100

-

.. > y)f
\+

Getbapo~ Ui+ shamtr =3 can'r

T/,(,‘*\' C'\,\

3 tty

éJ-format: [opcode: 5 | target address: 19]

gel few E&le @o, Fs R
‘ }1‘4"" o N ’\v-l-f'(:

Question 3: “I’m Jack Bauer, and this is the coolest problem of my life” (15 points, 25 minutes)

After sitting through yet another heart-stopping marathon of the TV series 24, we’ve decided to
design a new 24-bit processor in honor of Jack Bauer. Naturally, it has the following
characteristics:

e 24-bit words

e 24 24-bit registers

« 2™ locations of byte-addressed memory

« No floating point — the only point Jack Bauer needs is his .45

» The $zero register has been renamed $jb. You don’t mess with Jack Bauer.

Otherwise it is similar to MIPS in that we will use many of the same instructions, branches use
PC-relative addressing, and jumps use absolute addressing. Without floating point, the instruction
set is smaller, so we will encode everything into a single opcode field and eliminate the funct field.
The left column of the front side of your MIPS Green Card contains 31 instructions that we’d like
to reproduce. We have decided on the field configurations for the three instruction types shown

below:

M’
R-format: [opcode: 5 | rs:5 | rt:5 | rd: 5 | shamt: 4] — Mokt chibrs T4~
A A —JANL RS X $"‘”M'(
I-format: [opcode:5 | rs:5 | rt: 5 | immediate: 9] Ciely o sWiCYy,

~

a) What is one potential limitation with the shamt field for R-format instructions? How can we

deal with this limitation to allow for full functionality?) C i hH
SW. EF Anpre thsen e
f"l'\)-r va‘{'I-'ﬁLilj’
o A f'Lf»\.z

shiéte,

2 % g_ (3 .

wp o % Rl R L B i T AL
b) Based on the size of our immediate and our word size, it turns out that ‘lui’ and ‘ori’ are

inadequate for our processing needs. Describe a new instruction that will fix the problem. Don’t

forget to give the instruction a name! Jrekt uaby O bids y

‘Mf (or uvkotldz’ \J).)u (p‘vl'ébl ,,') 4 LMMl
X g . 5 G 5 to a
3 e 1 3 Confbvnt’ D :
Nesd 3 Lifftce~r InSkes. YO loed a 24 b+ PR, e

"4

Hunting down terrorists is hard work. Jack needs to make sure he can move around effectively: : Imf
org
¢) What is the expression to update the $PC to go to the next instruction? j

¢ > fPC 3

d) What is the new expression for the resulting $PC address after a branch? Assume that the
immediate counts by words.

~

$PC: FPE 3 r@m*“}”@'b 4

’ZFf

S

N
ot s

e

o

e) What is the maximum jump distance (in bytes) of a branch statement? Assume the target
address also counts by words.

} - ?/ g 1"'7 rif
f) How much memory (in bytes) can we access using a jump statement?
3 ‘ 2\” k'j“J COr ZH S ik
Safd T hee Jv—v\p ald,
A developer is complaining that the word size is making it difficult/inefficient to get around. L)
Y

Jack’s used to it, since he never does things the easy way, but we’re willing to listen. He suggests “°” g
that we align each 24-bit word into 32-bit slots so we can reuse some of the hardware from MIPS.

nevts Ll c,‘f{)
COVA/‘}‘A

g) Name one advantage of each scheme (be specific, you are not allowed to say “we can reuse
some of the hardware from MIPS”):

An advantage to using sequential 24-bit addressed words is:
g}-\/e JP‘-(I ¢ N\ /\'\H’\"\O/]

An advantage to using aligned 32-bit slots for our words is:

Bocit” Fo Confputt qu‘)’(atdrosSes :
T e e Sl Lo i b3y
Can J Al [‘h.’-("(’ q'o.j 2/

Apdestiiag o1 AP SEPP CReTPrpio TS ~wch

S:’/\-\P’e'ft

Question 4: split (17 points, 40 minutes)

In this question, you will be implementing the function split in C. Given a string s and a char c,
split should return an array of the strings that result when s is separated by c. In general, if ¢
occurs n times in s, split should return an array of n+1 strings.

Examples:
split ("My name is Michael”,' ');
{ "My" : "name" y "is" . "Michael" }

split ("Howdy™; 'd"); // The character doesn't have to be a space
{"How"’ "yl'}
split ("Hello Werld', "1L"):; // Note the empty string returned where '1l'

{UHat Moo Wor™, "d™} // appears twice.

split ("Banana®, 'x')?
{"Banana"}

a) First, complete the function countChar, which returns the number of occurrences of char ¢ in
string s.

U| f"‘
int countChar (char* s, char c) { S
inF cownt ‘/0/‘ —'Zf‘u > \A/__{.'/\/) ‘{}«(‘1.1'/‘
b (e ¢) ¢ ; T i L;”‘C ‘:’/’;)
Gl ey wll beoet et
: = e & pt Ear ""’r"“"v')
Sv¥) S e

'

\ ’ 3 YD)

/\Fr M(r\or ¢f‘f°/

(;ou\’\r ((5 v O\
re‘/urn J Lanfsss 09 3

e carent
Xare e 7 ¥

rq},r(\ jrv"e’wq

@ "(})

¥

b) Now, complete the function split. You may use countChar in your solution. A few
comments and lines of code have been provided for you.

You may not modify the original string that s points to.

You may use any of the functions in the C library <string.h> except strtok (which is very similar

to split). In particular, the function strncpy (char* destination,char*
source, size t num), which copies num characters from source to destination, may be
particularly useful.

char** split(char* s, .char ¢) {

(({
Log* 4
Qﬁbs 0'\’
AR e
Y\ (-"‘“DOH
“ 1
C

Eu\c‘(

char** result;
int resultIndex, resultLength; g"(,,)ft
//Put other local variables here

(/L,.(x PL/-'P/‘

//Initialize variables, do other work to set up

rarwh—L,,\)\’(\ = (ountChar(s, c) V)JQ

cef Wit = ’(Cu.r k) el (e oé(ot\nrk)'ror‘j'*bdﬂ‘\})
temp =5,

//Process each result string
for (resultIndex=0; resultIndex<resultLength; resultIndex++) ({

white ((emp)& & hmp 129 Femp v
redw\Y [;('t,(ulr t(\’-‘&é—]‘; M¢(loC((f?-¢0{<cL~w!)- CHMP s | f’))'

SkenN Cp Y C"”“”G“““’ff\o‘ﬂﬂ]) S, temp jj)1
(clv\t E reswlt Iﬂt\ﬂyj[{.(M'ﬁ] =5 \\O/)

§= Femp ¥
R pbs

[ttt U
wlgo “"‘l fo e

7‘3 Fc Co ©

éf\—(For mallec ’———/jje. prinae e(lo

~| fi’ P‘r

3 L‘ f 1A - caa k
3 pes :’Mt AAIESETY Jetonl o-baud S pr .3 e
& i ¢
= v P lratar . Jetprer et pte ecrol g <
C/‘o nail ;'cr <, Q,rop/en) : v
. ; N RMP \/lfld")i‘- “
return result; _\2‘,” N P
} Loxkts fPert- 0 € 2~> @
~2 pts For e~i gl ey £ [pel=n .
P 3 {)l ”k) N TN ks il !‘;7 y,
c Slre0€ /2‘“_! Ao lnare. @ while loap
I AR TRV Cor 5i 1<)

No ptc Ao dtheh cor ger~o
e T, TS felety.

Question 5: Cache Flow (10 points, 15 minutes)

Consider the following data structure that keeps track of employees at a company.

typedef struct {

int salaey:;

int bonus;

int vacationTime;
} Employee;

Your co-worker (a Stanford graduate) writes a short routine to sum these pieces of information
across a very large employee database:

//Returns a pointer to the sums of the three employee statistics
int* computeStatistics(Employee *database, int numEmployees) {
int i
int *result = malloc(sizeof (int)*3);
result[0] = result{l] ="result[2] = 0:"//initialize sums
for (1i=0;i<numEmployees;i++) {
result[0] += database[i].salary;
}
for (i=0; i<numEmployees;i++) {
result[l] += database[i].bonus;
}
for (i=0; i<numEmployees;i++) {
result[2] += database([i].vacationTime;

}

return result;

Your co-worker complains that his routine runs too slowly.

a) Describe in one sentence what about your co-worker’s routine causes it to run slowly?

Acu(fu' “«:~u’J V%/ foof Jp¢hdJ locplltj}

b) Below, rewrite a version of computeStatistics that will achieve better performance:

int* computeStatistics(Employee *database, int numEmployees) ({
16 ol
int *result = malloc(sizeof (int)*3);

result[0] = result[l] = result[2] = 0; //initialize sums

éof é\,o |(, /\,s\/-‘\E(u,{)lDy{" ‘rf) { \
(‘Gfu(f ﬁoj*")""‘"LHUEI-]_, {‘u(arj/

cegwlt {[J = Arkal ere [/ 1 o/uw_(

refw| b gZJ s A”*“)’"!f Ci 3 ; ULCAt}“IO'\ F,’ch.

\ [Rqu:C CQuostion Congfrered o« q.wlmlc) Lo p1s
7?*.{‘ ‘\L"f OV"L\"&// . | M“KS » Co}" ‘A P‘rf— b) Lbrrdof’/ o{*Llf P‘rh‘
Witk Corroct Qxfltmrf'bﬁ\ i ol tes Vel e . e
g L4
bt wrst) | 6(’*1 - Otlar paris S alle Cache = 53
rarﬁuf,—-.r\(l 1 AACree(e | ?lfc,vmbh"a‘
CW°V‘6\ nk l\) gf’h\' - Ofg, PeCES /\ur‘[\j terrect,
ot L& [L
Cele J return result; (Upts — Other ‘oorﬂ (bA-\/'(a fa 4
} f Ful f’—k,/’lan,uiq,,,

¢) By approximately what factor does your optimized code in pan b) outperform your co-worker’s
code? Briefly justify your answer. —

N a./ffaac(«l:‘j

o €

afF Facrl ~eats

(2 byter, & I get
ot tarhyo ity P Blec K Thed

(€ Cevoed =D ‘/3 ar Meay ™M ssel .

1478 Code losde all o Fu klothe Hl.p mppar T+
calh o€ Flese G{ao‘lz(

0.][“7 :] P’A‘V’\/j M)’f\b I,l}v‘f
(VBN
nyrrses @ /a’L/c’JQJ

onge :> '/J A S /"\an\j

1asfe blocks ,

. (
k/? e ~~gc retl. S5 clore to 2% 5ruﬂ-f Sine OW[SS line

S ¥y pf calbly Laq@ (4

Function prototype, for reference:
play(char* world, int* commands, int currentRow)

Play:
addiv 59?;"() A1 #£ill in the prologue
oW fra OlYspd
1w S, 0(5&\ #$t1 holds current command
addu 5t2, 5a0; jil #5t2 holds address of current row
lbu St3, OQ;) #St3 holds the current row’s byte
Checkl:
addiu $to, %0, 1
bne $t0, $t1, Unedd

#$t0 used to check current move

sb $t3, :Lj$t2) #move up
i& 50, 0 LSED) #clear old position
addiu $a2, $az2, :l #update currentRow
i NexHNove

Check2:

addiu $tO, @@, i

bane $t0, Sti1, C.‘a}i\oi‘)\

sc) $¥9Y3) :

ob §¥% O(H) #move right and update world
NextMove:

addiu $al, $Sal, f[#set up arguments

jal Play

Finished:
lw $ra 0\5"9\— §fill in the epilogue

addiv ¥ep $op 4

ir Ake

Ry

\ ot coceed ol acotion
\/1 e+ par (perek El-in

ks
S(ml\tf o 9YARES \-f\\ib"*ek with C

O On\\j dockd oy 0oL R,

11

Question 7: A MATter of Performance (9 points, 15 minutes)
Bob’s computer specs are currently:

Unified L1 cache
L1 cache hit rate of 90%
L1 cache hit time of 1 cycle

The miss penalty to main memory is 100 cycles
Ideal CPI of 1

a) What is his AI\éAT?
<R SR :
\or 3 FERTO R

b) If he runs a program that has 50% loads/stores, what is his program’s CPI?

L (PLaul ¥ CPE sl

¥ o — ‘ iy
Le* A iitheny art i _') g (| 100): | ol
u\ ax \" n '\& N(th & \)_1.. o N‘QM‘” ALLQ‘?’ . : tastv e
wxptun~ priesr Disgusted at his slo . he requests that you improve it by adding an L2 cache. He wants

\ (@r i you to cut down his AMAT to 6.
- r MR R(70

¢) The L2 cache you have in mind has a Local Miss Rate of 35%. What is the worst Hit Time it
can have while still meeting Bob’s request?

7/9\r HTL\ Ry, (HTLL+ M&LLMP\-L\ S+ 45=¢

(ot 6z V4,) (et X5
=d) Bob doesn’t like it, so you set Bob up with a different L2 cache with a Hit Time of 10 cycles.
FENRS Now, his system has a Global Miss Rate of 6%. What is his new CPI?
Gl AR B MR, ~dR(, Ortanct T (MRa (Wt MRG0)Y
T Ly MRyt %":’ - 0% f1,5 (of Lio+tlno))) = W\ 5
~) ot v e) What is the relative performance of his upgraded computer versus his old one?

CPL samy :(M'\AT - HT) Y%‘?
= (R mM(%)

\ '%}7-

Lorrr Oxpardad
=3 Q:?re‘r‘"‘"\ o KL _ Vo
CFL o \

=\ goc reinsc U7

| ik oo P tmanor Q),rO“"\A
-\ 1 .

e QECOCS i\
oot e 'Yy

(cact oo e

AN

{1ippd
o A
3 ‘ s Q J'A\'\’-N‘ ; o\r\l \nwnﬁ\‘)’e"\,
- n
‘\1 \f‘.\”mb : \, lﬂl“\ \J\) A A‘\ &)
\ QASIETEN (s NLTP

an

- 0 (Pr'QUwr \'Q’('\

12

Question 8: Mystery (7 points, 15 minutes)

Decipher the MIPS code below and explain in a sentence or two what it does (not instruction-by-

instruction):
$a0 -> array, $al -> length of array
Mystery:

move $Sv0, $0

Label:
sLti SEQ - sal, 2 # exit if fewer than
bne $t0, $0, Done # 2 elements remaining
1w $t0, 0($a0)
1w Stl- 4(Sa0)
alt S£2, Htl, 5t
add. “$vD, $v0, St2
Subt. Sals wSal. 1
addi $a0, $a0, 4 Re v \
j Label >3 <
Done:) € <&k 3
beq $v0, $0, Returnl
addi $v0, -$0, . 0 C>
S Sra
Returnl:
addil Svh, $0, 1
jr Sra

st R
“ sreictly A ‘j

6 pts 2
£4‘U- (=Y “J;g(,«dtij
’2/'!*: Gt vsacfs Yhe accry :
(/’fVH Cor g
l \'(o‘c"‘l"g o

o

(%r*e)

N j(lﬂ(’*f’\\)

/

01’&(("/" SQ

|'£

/)
Aucch“’\ﬁ

13

