Midterm II

Name:	No manifestive and a second and a		
	The first problem is v your final answers are	he second is worth 40 able with proper units.	points.

2. ___

TOTAL: ___

1. (60 points)

The gas turbine system shown schematically above functions like a steady-flow standard Brayton cycle except that a damaged flow conduit between the compressor and heater results in a throttling restriction (with no heat or work interaction) that causes the pressure to drop from 2 to 3 by 100 kPa. Information about the states during actual system operation is shown in the diagram above. The air-flow rate is 8.5 kg/s. The compressor efficiency is 0.82. In analyzing this system, assume the compressor and turbine are adiabatic, and treat the working fluid, air, as a ideal gas with constant specific heats: $c_p = 1.005 \text{ kJ/kgK}$, $c_v = 0.718 \text{ kJ/kgK}$.

- (a) Plot the state points and processes on a T-s diagram, showing appropriate constant pressure lines.
- (b) Determine the power input to the compressor and the actual exit temperature from the compressor, T_2 .
- (c) Determine T_3 .
- (d) Determine the rate of heat input to the heater.
- (e) Determine the net power output of the system and the cycle efficiency.

2. (40 points)

The vapor compression refrigeration system shown schematically above uses R-134a as its working fluid. The mass flow rate of R-134a in the system is 0.031 kg/s. The pressure at states 3 and 4 is 1600 kPa. State 4 is saturated liquid. The pressure at states 1 and 2 is 360 kPa. State 2 is saturated vapor. The following R-134a data is available for your analysis:

The specific entropy of saturated vapor at 360 kPa is 0.92836 kJ/kgK. For superheated vapor at P = 1600 kPa and s = 0.92836 kJ/kgK, the specific enthalpy is 284.76 kJ/kg.

In this cycle, because the piping is not insulated, the process from 4 to 1 is *not* adiabatic. From 4 to 1, heat is input at a rate of 0.8 kW. In your analysis, assume the compressor is reversible and adiabatic.

- (a) Show the cycle on a P-h diagram.
- (b) At both 360 kPa and 1600 kPa determine the saturated liquid and vapor specific enthalpies (h_f and h_g)
- (c) Determine the rate of heat absorption in the evaporator.
- (d) Determine the cycle COP.