CS 61A Structure and Interpretation of Computer Programs
Fall 2011 Final Exam Solutions

INSTRUCTIONS

e You have 3 hours to complete the exam.

e The exam is closed book, closed notes, closed computer, closed calculator, except a one-page crib sheet of your
own creation and the three official 61A exam study guides, which are attached to the back of this exam.

e Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

For which assignments
do you have unresolved
regrade requests?

All the work on this exam
is my own. (please sign)

For staff use only

Q1] Q2] Q.3] Q4] Q5] Q.6] Total

/12 /16| /12| /18| /10| /12 /80

1. (12 points) What Would Python Print?

Assume that you have started Python 3 and executed the following statements:

def oracle(a, b, c):
if a == 42:
return b(a)
return c

class Big(object):
def medium(self, d):
def small(e):
nonlocal d
if e > 0:
d = d + self.medium(e) (-e)
return d
return small
class Huge(Big):

def medium(self, d):
return Big.medium(self, d+1)

For each of the following expressions, write the repr string (i.e., the string printed by Python interactively) of
the value to which it evaluates in the current environment. If evaluating the expression causes an error, write
“Error.” Any changes made to the environment by the expressions below will affect the subsequent expressions.

(a) (2 pt) oracle(41, lambda x: 1/0, ’blue pill’)
’blue pill’

(b) (2 pt) oracle(42, lambda x: ’red pill’, 1/0)
Error

(c) (2 pt) Big.medium(self, -2)(-1)
Error

(d) (2 pt) Big() .medium(1) (Big() .medium(2) (3))

(e) (2 pt) Huge() .medium(4) (5)
11
(f) (2 pt) Big() == Huge()

False

Login:

2. (16 points) Environment Diagrams.

(a) (6 pt) Complete the environment diagram for the program in the box below. You do not need to draw

an expression tree. A complete answer will:

e Complete all missing arrows. Arrows to the global frame can be abbreviated by small globes.

Add all missing names in frames.

Add all final values referenced by frames.

Add all local frames created by applying user-defined functions.

(), :
sixty: sixty(x):
. def o(ne):
add: v return x *x ne
. def A():
add(a, b): nonlocal o
_lreturn a+hb o = lambda x: X * X
return 2
x: 1 < return add(o(3), add(A(), o(4)))
A: —
No points were
0: awarded or
subtracted for
sixty including or
o(ne): excluding add in
the diagram.
ne: 3 _Ireturn X * ne Y
0
\4
A():
nonlocal o
= lambda x: x * X
lambda return 2

lambda(x):

_Ireturn X % X

from operator import add
def sixty(x):
def o(ne):
return x x ne
def A():
nonlocal o
o = lambda x: x * X
return 2
return add(o(3), add(A(), o(4)))
sixty(1)

(b) (2 pt) What value is returned by evaluating sixty(1)? If evaluation causes an error, write “Error.”

21

(c) (6 pt) Complete the environment diagram for the program in the box below. Assume Python’s normal
lexical scoping rules. You do not need to draw an expression tree. A complete answer will:

e Complete all missing arrows. Arrows to the global frame can be abbreviated by small globes.

e Add all local frames created by applying user-defined functions.
e Add all missing names in frames.

e Add all final values referenced by frames. Represent tuple values using box-and-pointer notation.

sixty:

man:

O

v

snow(a, b): QP_

__lreturn (b, a(b+2))

w |€ro

N €T
v (€0

A

ice:

man

ice

snow

man(b) : Q?_

def ice(d):
return (b, d)
return snow(ice, b+1)

ice(d):

_‘return (b, d)

def snow(a, b):
return (b, a(b+2))

def man(b):
def ice(d):
return (b, d)
return snow(ice, b+1)

e = man(2)

(d) (2 pt) If Python were instead a dynamically scoped language, what would be the value bound to e in
the global frame after this program was executed? Write the repr string of this value.

(3’

(3, 5))

Login: 5

3. (12 points) Pyth-On Vacation.

Finish implementing this account object in Logo. Unlike a Python Account from lecture, the balance of this
Logo account is stored as a global variable called bal.

The desired behavior of the account is to accept deposit and withdraw messages. Deposit increases the
balance by an amount, while withdraw reduces the amount if funds are available.

? make "john_account make_account 100

? print invoke "withdraw :john_account 40
60

? print invoke "withdraw :john_account 70
insufficient_funds

? print invoke "deposit :john_account 20
80

? print invoke "withdraw :john_account 70
10

Invoking a method calls the corresponding named procedure. The deposit and withdraw procedures are
implemented below.

to deposit :amt
make "bal :bal + :amt output :bal
end

to withdraw :amt
ifelse :amt > :bal [output "insufficient_funds] [make "bal :bal - :amt output :bal]
end

(a) (6 pt) Add punctuation and the word run to make_account and invoke so that the account object
behaves as specified. You may add quotation marks, square brackets, colons, parentheses, and the word
run, but no other words. Do not remove any words. Multiple calls to run may be needed.

to make_account :balance

make '"bal :balance
output [run sentence :message :amount]
end

to invoke :message :account :amount
output run :account
end

OR

to make_account :balance

make "bal :balance
output [sentence :message :amount]
end

to invoke :message :account :amount
output run run :account
end

OR

to make_account :balance

make '"bal :balance
output sentence '":message '":amount
end

to invoke :message :account :amount
output run :account
end

Login: 7

(b) (6 pt) The D33P language includes three types of tokens: open parentheses, close parentheses, and
integers. An expression is well-formed if it contains balanced parentheses, and each integer correctly
indicates its depth: the number of nested sets of parentheses that surround that integer.

Implement correct_depth, which takes a list of tokens as input and returns True if and only if a prefix
of the input is a well-formed D33P expression. Assume that the input contains a balanced set of nested
parentheses with single-digit positive integers surrounded by parentheses. You only need to check that
the integers indicate the correct depths.

Do not change any of the code that is provided. You may not use any def statements or lambda expressions.

def correct_depth(s, depth=0):
"""Return whether a prefix of list s is a well-formed D33P expression.

>>> 1list(’ (1))
[7(), ’1), J))]
>>> correct_depth(list(’(1)?))
True
>>> correct_depth(list(’(2)7))
False
>>> correct_depth(list (’ ((2)((3)))?*))
True
>>> correct_depth(list (’ ((2)(3))’))
False
>>> correct_depth(list(’ ((3)(2))’))
False
>>> correct_depth(list (’ (((3)((4))(3))(2)((3)))’))
True
first = s.pop(0)
if first !'= 2 (’:
return depth==int(first)

while s[0] != ?)’:
if not correct_depth(s, depth+1):
return False
s.pop(0)
return True

OR

depth = 1
ok = True
for ¢ in s:
if ¢ == ’(":
depth += 1
elif c == 7)’:
depth -= 1
if depth == 0:
break
else:
if int(c) != depth:
ok = False
break
return ok

4. (18 points) Interpreters. It is possible to complete each part of this question without completing the others.

The Decider language applies decisions, which are tree-structured rules that allow complex classification
schemes to be decomposed into hierarchies of lookups. For instance, the problem of classifying household
pets might use the following “decision” to distinguish among birds, cats, and dogs.

two woof -
four meow ot

To decide what sort of animal something is, we look up its features. We first check whether it has two legs or
four. If it has four legs, we check what sound it makes. Applying a decision always begins at the root (left).

All values in Decider are dictionaries with string-valued keys, such as the dog fido and the bird tweety.

fido = {’name’: ’fido’, ’legs’: ’four’, ’sound’: ‘woof’}
tweety = {’name’: ’tweety’, ’legs’: ’two’}

A decision is a dictionary that has >?’ as a key bound to its decision feature. A decision also contains options.
The values of options can be decisions, forming a tree. The animals decision below matches the diagram above.

four_legged = {’7’: ’sound’, ’woof’: {’kind’: ’dog’}, ‘meow’: {’kind’: ’cat’}}
animals = {277 legs’, ’two’: {’kind’: ’bird’}, ’four’: four_legged}

(a) (4 pt) The decide function takes a decision and some features (both dictionaries). First, it finds
the decision feature f. Next, it looks up the option for that feature stored in features. Finally, it
returns the value for that option. Fill in the four missing names in the blanks in decide, which raises a
DecisionError whenever the decision cannot be applied to the features.

def decide(decision, features):
"""Apply a decision to some features, both of which are dictionaries.

>>> decide(four_legged, fido)
{’kind’: ’dog’}
>>> decide(animals, fido) # Returns the four_legged decision
{’meow’: {’kind’: ’cat’}, ’woof’: {’kind’: ’dog’}, ’7’: ’sound’}
nuan
if ’?’ not in decision:

raise DecisionError(’Decision has no ? -- not a decision.’)

decision

f= o ____ [>7’]

if f not in features:
raise DecisionError(’Features does not contain the decision feature.’)

features

option = _____________________________ [£]

if option not in decision:
raise DecisionError(’Decision does not contain selected option.’)

decision option

return [

class DecisionError (Exception):
"""An error raised while applying a decision."""

Login: 9

(b) (6 pt) The animals decision is a depth-two tree that contains four_legged as the value for its ’*four’
option. The decider_apply function repeatedly applies the result of a decision to some features until it
finds a result that cannot be applied. In this way, it traverses a tree-structured decision.

Implement decider_apply, which must call decide within a try statement. This function repeatedly
applies the result of decide to the features. It returns the result of the last successful call to decide. If
decision cannot successfully be applied to features at all, return decision.

You may not use any def statements or lambda expressions in your implementation.

def decider_apply(decision, features):
"""Traverse the decision by applying sub-decisions to features.

>>> decider_apply(four_legged, fido)

{’kind’: ’dog’}

>>> decider_apply(animals, fido)

{’kind’: ’dog’}

>>> decider_apply(animals, tweety)

{’kind’: ’bird’}

>>> decider_apply(fido, tweety) # fido is not a decision, so return it
{’sound’: ’woof’, ’legs’: ’four’, ’name’: ’fido’}

error = False
while not error:
try:
decision = decide(decision, features)
except DecisionError:
error = True
return decision

(¢) (6 pt) All expressions in Decider are dictionaries. Compound expressions contain the keys ‘operator®
and ‘operand‘. Two compound expressions, big pet_exp and kind _of pet_exp, appear below.

pets = {’7?’: ’size’, ’small’: tweety, ’large’: fido}
big_pet_exp = {’operator’: pets, ’operand’: {’size’: ’large’l}}
kind_of_pet_exp = {’operator’: animals, ’operand’: big_pet_exp}

To evaluate a compound expression, evaluate its operator, evaluate its operand, then apply the decision
dictionary that is the value of the operator to the features dictionary that is the value of the operand.
All expressions that are not compound expressions are self-evaluating.

Complete the implementation of decider_eval by filling in the missing expressions.

def decider_eval(exp):
"""Evaluate a Decider expression.

>>> decider_eval(fido)

{’sound’: ’woof’, ’legs’: ’four’, ’name’: ’fido’}
>>> decider_eval(big_pet_exp)

{’sound’: ’woof’, ’legs’: ’four’, ’name’: ’fido’}
>>> decider_eval (kind_of_pet_exp)

{’kind’: ’dog’}

>>> decisions = {’7’: ’?’, ’legs’: animals, ’size’: pets}

>>> sub_exp = {’operator’: decisions, ’operand’: {’?7’: ’legs’}}
>>> nested_exp = {’operator’: sub_exp, ’operand’: fido}

>>> decider_eval (nested_exp)

{’kind’: ’dog’}

’operator’ in exp and ’operand’ in exp

decision

features = ______________________ _ _ _ _ _ _ o _______
return decider_apply(decision, features)

else:

return exp

(d) (2 pt) To what value does the following Python expression evaluate? Write its repr string.

decider_eval({’operator’: pets, ’operand’: {’size’: ’small’}})

{’legs’: ’two’, ’name’: ’tweety’}

Login: 11

5. (10 points) Concurrency.

The following two statements are executed in parallel in a shared environment in which x is bound to 3.

>>>x =x + 1
>>> x

I
o]
N
*
o]

(a) (2 pt) List all possible values of x at the end of execution.
4,9, 10, 11, 12 (answers omitting 11 were marked as correct)
(b) (2 pt) From the values you listed in (a), list all possible correct values of x at the end of execution.

10, 12

The following program manages concurrent access to a shared dictionary called grades that maps student
names to their 61A grades. The list roster contains the names of all students who have assigned grades.

grades = {}
roster = []
grades_lock, roster_lock = Lock(), Lock()

def add_grade(name, grade): def remove_grade(name):
grades_lock.acquire() roster_lock.acquire()
grades [name] = grade grades_lock.acquire()
roster_lock.acquire() if name in grades:
if name not in roster: grades.pop (name)
roster.append (name) if name in roster:
roster_lock.release() roster.remove (name)
grades_lock.release() grades_lock.release()

roster_lock.release()

For each set of statements (left and right) executed concurrently below, circle all of the problems that may
occur, or circle None of these are possible if none of the listed problems may possibly occur.

(c) (2 pt) [>>> add_grade(’eric_k’, 1) >>> add_grade(’steven’, 2)

(A) Deadlock
(B) Both processes simultaneously write to grades or roster

(C) None of these are possible

>>> add_grade(’stephanie’, 3) >>> roster.append(’eric_t’)
d g P 1%
(d) (2 pt) .

>>> grades[’eric_t’] = 4

(A) Deadlock

(B) Both processes simultaneously write to grades or roster

(C) None of these are possible

) 3 J] sy
(e) (2 pt) >>> add_grade(’phill’, 5) >>> add_grade(’aki ,.6)
>>> remove_grade(’aki’)

(A) Deadlock
(B) Both processes simultaneously write to grades or roster

(C) None of these are possible

12

6. (12 points) Iterators and Streams.

(a) (4 pt) The generator function unique takes an iterable argument and returns an iterator over all the
unique elements of its input in the order that they first appear. Implement unique without using a for
statement. You may not use any def, for, or class statements or lambda expressions.

def unique(iterable):
"""Return an iterator over the unique elements of an iterable input.

>>> list(unique([1, 3, 2, 2, 5, 3, 4, 11))
[1’ 3, 2) 5’ 4]

nnn

observed = set()
i = iter(iterable)
while True:
el = next(i)
if el not in observed:
observed.add(el)
yield el

The function sum_grid takes a stream of streams s and a length n and returns the sum of the first n
elements of the first n streams in s. Stream and make_integer_stream are defined in your study guide.

def sum_grid(s, n):
total = 0
for _ in range(n):
t = s.first
for _ in range(n):
total = total + t.first
t = t.rest
s = s.rest

return total

def make_integer_grid(first=1):
def compute_rest():
return make_integer_grid(first+1)
return Stream(make_integer_stream(first), compute_rest)

(b) (2 pt) What is the value of sum_grid(make_integer_grid(1), 4)7
64

(¢) (2 pt) Define a mathematical function f(n) such that evaluating sum_grid(make_integer_grid(1), n)
performs O(f(n)) addition operations.

Login:

13

(d) (4 pt) The function repeating returns a Stream of integers that begins with start and increments each

successive value until stop would be reached, at which point it returns to start and repeats.

Cross out lines from the body of repeating so that it correctly implements this behavior.

def repeating(start, stop):
"""Return a stream of integers that repeats the range(start, stop).

Solution:

>>>
>>>
@3,
>>>
4

def

s = repeating(3, 6)

s.first, s
4, 5, 3)

.rest.first, s.rest.rest.first, s.rest.rest.rest.first,

s.rest.rest.rest.rest.first

make_stream(current) :

def compute_rest(next):

def compute_rest():

return

return

return

return

nonlocal start

next = current+1

next = current 7 (stop-start)
if next > stop:
if next == stop:
next = start
start = next
return make_stream(start)
return make_stream(next)
return Stream(current, make_stream(start))
return Stream(current, make_stream(next))
Stream(current, compute_rest)
Stream(current, compute_rest())

compute_rest

compute_rest ()

return make_stream(start)

14

def make_stream(current):

dof GOmPﬂ!tG ;est‘nnvi—\-

def compute_rest():

nonlocal—start (optional)
next = current+l
RENE——CUrFreRt——(atop=atart)
A4 v/
if next == stop:
next = start
start = noxt (ok if "nonlocal start" crossed out)
+ h] 4+ [o +=)
retura—mere—Streamsttarty
return make_stream(next)
roturn Stroam(cuirrant malra ctroaml(ctart)) (ok if "return rTIaI(e—Strear“(ne)(t)II not crossed out)
L 1 Y (ok if "return make_stream(next)" not crossed out)
—r-eﬂbufn—S%reean-éeﬁ-r-r-eﬁ-t—m&k, e—SEreamcheiEty
return Stream(current, compute_rest)
" o 2 L L AN (ok if "return Stream(...)" not crossed out)
retern-streamteurrents—conpute—restt
Y at 11 campiita oot (ok if "return Stream(...)" not crossed out)
- B Y (ok if "return Stream(...)" not crossed out)

+ .
LTI CUipua Tt T TOoTUNY

return make_stream(start)

