Fall 2011

Midterm 2

EE 40

		(4)
NAME:	$-\omega$	Lution

SSID:

Instructions

Read all of the instructions and all of the questions before beginning the exam.

There are 4 problems in this exam. The total score is 100 points. Points are given next to each problem to help you allocate time. Do not spend all your time on one problem.

Unless otherwise noted on a particular problem, you must show your work in the space provided, on the back of the exam pages or in the extra pages provided at the back of the exam. Simply providing answers will only result in partial credit, even if the answers are correct.

Draw a BOX or a CIRCLE around your answers to each problem.

Be sure to provide units where necessary.

	GOOD LUCK!	
PROBLEM	POINTS	MAX
1		15
2		25
3		40
4		20

"Pessimism is just an ugly word for pattern recognition." -Anonymous

Problem 1 Quickie

(12.5 points)

a) In the box below, provide a symbolic expression for v_0 for t > 0 if v(0) = 4 V.

b) If $\mathbf{R}_{f} = 40 \text{ k}\Omega$, $\mathbf{R}_{1} = 10 \text{ k}\Omega$, $\mathbf{C} = 10 \mu\text{F}$, and $\mathbf{v}(\mathbf{0}) = 4 \text{ V}$, write the expression for \mathbf{v}_{0} for t > 0 in the **BOX BELOW**. (2.5 points)

$$V_{o}(t) = -4e^{-\frac{t}{4}}$$
 (V) $t > 0$

a) What is the value of V_0 at t = 0⁺? Write It in the BOX BELOW. (5 points)

$$\dot{U}_{L}(0^{-}) = -iA \implies iL(0^{+}) = -iA$$
.
 $\dot{U}_{0}(0^{+}) = \dot{U}_{L}(0^{+}) \cdot R_{3} = -9_{000} V$.

b) Using whatever method you like (yes, anything, don't raise your hand to ask if you can use (x,x,y), provide a <u>symbolic expression</u> for the voltage V₀(t) for t > 0 in the **BOX BELOW.** (17.5 points)

$$\begin{aligned}
\left(\int_{0}^{\ell} (t) = -R_{3} e^{-\frac{(R_{1}+R_{3}+R_{3})t}{Z_{1}}} & (v) \quad t > 0 \right. \\
T &= \frac{1}{R_{eg}} = \frac{L_{1}}{R_{1}+R_{3}+R_{3}} \\
\left(\int_{0}^{\ell} (t) = -R_{3} \\
\left(\int_{0}^{\ell} (t) = 0 \right) \\
\end{array}$$

$$V(t) = -R_3 e^{-\frac{2}{4}}$$

c) Using the values provided in the figure, provide an expression for the voltage $V_0(t)$ for t > 0 in the **BOX BELOW**. (2.5 points)

$$V_0(t) = -9_{000} e^{-1.8 \times 10^6 t}$$
 (v) $t > 0$.
 $R_3 = 9_{000}$.

$$\frac{L_{1}}{R_{1}+R_{2}+R_{3}} = \frac{10\,\text{mH}}{3\,\text{k}+6\,\text{k}+9\,\text{k}} = \frac{5}{9}\,\text{x}/0^{-6}$$

"Accept that some days you are the pigeon, and some days you are the statue." -David Brent, The Office

.

Problem 3 Second order circuits

(40 points)

Consider the circuit below.

Γ

a) Find the second order **differential equation** for the variable I_L that describes the circuit behavior for t > 1 µs. Write into the box below. (15 points)

b) Is there a value for R1 such that the resonant circuit can be *critically damped* for $t > 1 \mu s$? (5 points)

.

Please show your equations clearly.

If YES, write the value here:

If NO, provide an expression that shows why not here:

snows why not here:
$R_1 = -3 + 3J_2 k = 2$
$Q = \frac{1}{2} \left(\frac{R_2}{L} + \frac{1}{CR_5} + \frac{1}{CR_1} \right) = \frac{1}{2} \left(\frac{\frac{9K}{18mH}}{16mH} + \frac{1}{1nFx6K} + \frac{1}{1nFxR_1} \right) = \left(\frac{1}{3} + \frac{1}{2R_1} \right) \frac{1}{1} \frac{1}{$
$\mathcal{W}_{0} = \sqrt{\frac{1}{12}\left(\frac{R_{0}}{R_{0}} + \frac{R_{1}}{R_{1}} + 1\right)} = \sqrt{\frac{1}{10Fx18mH}\left(\frac{q}{6} + \frac{q}{R_{1}} + 1\right)} = \sqrt{\frac{1}{2R_{1}} + \frac{5}{36}} \frac{x/o^{6}}{x/o^{6}}$
Critical damped d= 2.
$(\frac{1}{3} + \frac{1}{2R_1}) \times 10^6 = \sqrt{\frac{1}{2R_1} + \frac{5}{36}} \times 10^6$
$= \frac{1}{q} + \frac{1}{3R_1} + \frac{1}{4R_1^2} = \frac{1}{2R_1} + \frac{1}{3L_1}$
$\Rightarrow 4R^{2} + 12R_{1} + 9 = 18R_{1} + 5R_{1}^{2}$ $\Rightarrow D^{2} + 12R_{1} + 9 = 18R_{1} + 5R_{1}^{2}$
$n_1 + 6k_1 - 9 = 0$
$\Rightarrow R_1 = -\frac{6+\sqrt{36+36}}{2} = -3+3\sqrt{2} kn$

c) Determine the **two** *relevant* initial conditions of the circuit

,

(5 points)

Condition 1:

$$\Lambda_L(IMS^+) = 0$$

Condition 2:

$$\mathcal{A}_{L}'(lms^{+}) = 0$$

$$n'_{L}(1Ms^{-}) = 0 \implies n'_{L}(1Ms^{+}) = 0$$

 $V_{C}(1Ms^{-}) = 0 \implies V_{C}(1Ms^{+}) = 0$
 $L = n'_{L}(1Ms^{+}) + n'_{L}(1Ms^{+}) \cdot R_{2} = V_{C}(1Ms^{+})$
 $= n'_{L}(1Ms^{+}) = 0$

d) Assuming R1 = 9000 Ω , provide a complete expression for $i_L(t)$ for $t > 1 \mu s$.

۰.

Г

(15 points)

$$\begin{split} \vec{x}_{L}(t) &= \frac{1}{21} + C \qquad \begin{bmatrix} -\frac{1}{16}\chi/b^{6}(t-1/45) \\ = \frac{1}{21}\cos\left(\frac{\pi}{16}\chi/b^{6}(t-1/45)\right) - \frac{1}{2\pi}\frac{\pi}{16}\pi\left(\frac{\pi}{16}\chi/b^{6}(t-1/45)\right) \end{bmatrix} mA \\ \vec{T}rom \quad b. \\ \vec{Q} &= \left(\frac{1}{3} + \frac{1}{2R_{1}}\right)\chi/a^{6} = \frac{7}{18}\chi/b^{6} \\ \vec{W}a &= \sqrt{\frac{1}{36} + \frac{1}{2R_{1}}}\chi/a^{6} = \sqrt{\frac{7}{18}\chi/b^{6}} \\ \vec{W}a &= \sqrt{\frac{1}{36} + \frac{1}{2R_{1}}}\chi/a^{6} = \sqrt{\frac{7}{36}\chi}\frac{q}{4}\chi/a^{6} \\ \vec{W}a &= \sqrt{\frac{1}{36} + \frac{1}{2R_{1}}}\chi/a^{6} = \sqrt{\frac{7}{36}\chi}\frac{q}{4}\chi/a^{6}}{\chi/a^{6}} \\ \vec{W}a &= \sqrt{\frac{1}{36} + \frac{1}{2R_{1}}}\chi/a^{6} = \sqrt{\frac{7}{36}\chi}\frac{q}{4}\chi/a^{6}}{\chi/a^{6}} \\ \vec{W}a &= \sqrt{\frac{1}{16}\chi/a^{2}} = \sqrt{\frac{1}{(63-4\eta)}\chi/a^{2}} = \frac{1}{24\chi}\chi/a^{6}} \\ \vec{W}a &= \sqrt{\frac{1}{16}\chi/a^{2}} = \sqrt{\frac{1}{6}\chi/a^{2}}\chi/a^{6}} \\ \vec{W}a &= \sqrt{\frac{1}{16}\chi/a^{2}} = \sqrt{\frac{1}{6}\chi/a^{2}}\chi/a^{6}} \\ \vec{W}a &= \sqrt{\frac{1}{16}\chi/a^{2}} = \sqrt{\frac{1}{16}\chi/a^{2}}\chi/a^{6}} \\ \vec{W}a &= \sqrt{\frac{1}{16}\chi/a^{2}}\chi/a^{6}} \\ \vec{W}a &= \sqrt{\frac{1}{16}\chi/a^{2}}\chi/a^{6}} \\ \vec{W}a &= \sqrt{\frac{1}{16}\chi/a^{2}}\chi/a^{6}} \\ \vec{W}a &= \sqrt{\frac{1}{16}\chi/a^{2}}}\chi/a^{6}} \\ \vec{W}a &= \sqrt{\frac{1}{16}\chi/a^{2}}\chi/a^{6}} \\ \vec{W}a &= \sqrt{\frac{1}{16}\chi/a^{2}}\chi/a^{6}} \\ \vec{W}a &= \sqrt{\frac{1}{16}\chi/a^{2}}\chi/a^{6}} \\ \vec{W}a &= \sqrt{\frac{1}{16}\chi/a^{2}}}\chi/a^{6}} \\ \vec{W}a &= \sqrt{\frac{1}{16}\chi/a^{6}}}\chi/a^{6}} \\ \vec{W}a &= \sqrt$$

"I know they were just kids...but man we beat the f\$%! out of them!" - Dogma **Problem 4** Phasors

•

•

(20 points)

.

If
$$i_s = 5\cos(10t + 40^\circ)$$
 A in the circuit below, find i_0

$$\dot{n}_{0}(t) = \frac{30\sqrt{2}}{19} \cos(10t + 85^{\circ}) A$$

	atan(x)	atan(x)
x	radians	degrees
0	0	0
0.1	0.099668652	5.710593137
0.2	0.19739556	11.30993247
0.3	0.291456794	16.69924423
0.4	0.380506377	21.80140949
0.5	0.463647609	26.56505118
1	0.785398163	45
1.5	0.982793723	56.30993247
2	1.107148718	63.43494882
3	1.249045772	71.56505118
4	1.325817664	75.96375653
5	1.373400767	78.69006753
6	1.405647649	80.53767779
100	1.56079666	89.4270613

,

Page for extra work

~

.