Spring 2012 CS61C Midterm

Your Name: R U E b\K \ C

Login: cs6lc-_

Your TA: Rimas Scott Alan Eric Paul lan

Login: cs6lc-_

This exam is worth 100 poinfs, or about 10% of your total course grade.

The exam contains 8 questions.

This booklet contains 12 numbered pages including the cover page. Put all answers on

these pages, please; don't hand in stray pieces of paper.

You will receive 1 point for properly filling out your name, TA, and login

(login must be 5

filled in properly on every page of the exam). This is the exam's 0" question.

Question Points(Minutes) Score
0 1 |
1 6(3)
2 7(5)
3 10(4)
4 12(5)
5 21(13)
6 8(4)
7 20(14)
8 15(9)
Total 100(56)

Login: cs61c-

1. True or False (\¢+ each)

a. T I@ A mapper can output at most one key value pair per key value pair given as input.

b. @I F : The shuffle phase cannot group key value pairs in such a way as to send (a,7) and
(a,4) to separate instances of reduce in one round of map-reduce.

C. @I F : Assuming there is more than one worker, a map-reduce job can successfully complete
even if one of the workers fails.

d. @I F : Both the map and reduce tasks can run on multiple machines to exploit parallelism.

e. T I @: SIMD is an example of data level parallelism that performs different
operations on a single input data value to produce multiple output data
values. :

f. @ I F. The amount of parallelism achieved by a single SSE instrinsic is limited by the
width of registers.

Login: cs6lc-

2. Potpourri

(\\ ?Qa) Which of the following is NOT a consequence of Moore's Law?
A) The same computer will get cheaper over time
B) Transistors get smaller over time
@Transistors will become twice as energy-efficient every 18 months
D) Computer chips can get physically smaller over time

b) Moore's law states that the %mns\s‘md per ’chip will Aowgq every
Qe Q o)

|9 o 1Y months.
Q Q’f) ,
L\ \)sr\ c) Both the ARM and MIPS architectures were announced about 27 years ago. According to
Moore’s Law, approximately how many more times transistors per chip do we have today than
when these RISC instruction sets were developed? '
A) 64 times more transistors today
B) 1,000 times more transistors today
it Wwe €©))16,000 times more transistors today
& 18+~ (D))256,000 times more transistors today

CL ‘))6\\ d) What is the formula that the assembler should use to calculate the value to place in the
address field of a beq or bne machine language instruction? Assume DestAddress is the address
of the destination if the branch is taken and PC points to the beq instruciton.

For example,

Address Label Instruction

10000 beq $t1,$t2, DestAddress
10080 DestAddress: addu $t1, $$t2, $t3

A) DestAddress

B) DestAddress / 4

C) DestAddress *4

D) DestAddress — PC

E) (DestAddress — PC)/4

F) DestAddress — PC - 4
(G) (DestAddress — PC - 4) / 4
H) (DestAddress — PC — 4) * 4
1) None of the above

Login: cs6lc-

3. Memory Hierarchy [0 fol TS, (e
(RLEETION

Short answer:

1) Caches are designed to exploit TEMPORAL and S PA&T(RL locality in memory
access patterns. r feT (/Z, POWST | C ONF CQ@@@ZI(}

2) The level of the memory hierarchy has the highest cost per bit of storage.
closest/furthest from chip)

3) The level of the memory hierarchy has the highest capacity.

(closest{furthest from chip)

4) In a 16kB byte-addressed, direct mapped cache that uses 32-bit addresses and 64 byte
cache lines, the address is divided into 6 offset bits, g index bits and

_ L% agbis [6T Yz boInT (F onE coresTT]

5) Holding capacitance and power constant, a CPU’s voltage must be decreased by a factor of

\) ‘A toallow for a doubling of frequer)cy.

Multiple choice:

For each of the following questions, select the option which is most often true:
A) increases
B) decreases
C) does not effect

6) Increasing the capacity of a cache A its access time

7) Decreasing the capacity of a cache A its miss rate

8) Decreasing the capacity of a cache C its miss penalty

9) Increasing a cache's hit rate E the effective average memory access time

10) Assuming a constant capacity, increasing a cache's block size (cache line size)

E OQ C the amount of tag storage required : :>
= - ARUT TAG A RERTE
E‘ NEveds ON LF TALEN W Tl WIBTH=C

(t

ORTF 4

4. Compiling Linking Interpreting etc.

Login: cs6lc-

a) In one word each, name the most common producer and consumer of the following items:

Choose from: linker loader compiler assembler programmer

(item) This is the output of: This is the input to:

bne $t0,$s0,done Co MPILER ASCEMERLC L
char *s = "hello world" > ROGR AMMETR. COMPLER
app.o string.o ACCEom RLER. L (\CER.

firefox

L (NER

LOADETR

T Po|uT PETL CORRETT ANCWER Powr < BoXel D

b) Circle all the advantages of interpretation over compilation:

e Interpreted programs often have a higher CPI, resulting in better resource use.
e’ Interpreted programs do not require compilation.

e An interpreted interpreter can interpret itself, eliminating any need for compilers.

(An interpreted program can run on many different platforms without modification.)

c) Circle all the reasons why many programs are compiled instead of interpreted:

e __Compilers produce programs that often execute faster,/

e ltis easier to write code when using a compiler than when using an interpreter.

e Interpreted programs cannot be scaled to many machines.

(e It's harder to reverse engineer a compiled program than an interpreted omD'

<+\F—()Q

— |
NS

FQ(L(

CORRE(CT ANSWEE-

(S

Login: cs6l1c-

5. C Question - Graph Representation

// vertex_t declared elsewhere, sizeof(vertex_t) == 16
// struct holding two pointers to vertex_t's
typedef struct edge {
vertex_t *first;
vertex_t *second;
} edge_t;

/! A graph is represented as an array of edge_t pointers terminated by a null pointer
(similar to how a c string is terminated by a null character)

// The following pointer to a graph is declared:

edge _t** G;

a) Determine the value of the following expressions, assuming a 32-bit architecture and tightly-

packed structs: s Ly exact answtis

sizeof(&G) = 4 Pt of e
sizeof(G[0]) = ¢ rﬂ"*t" coediy A wnits 71/3/1‘

sizeof (**G) =
b) Draw a possible pointer diagram starting from G, assuming the graph it points to has exactly
two edges and three vertices. G and the three vertices are given - your job is to fill in the rest. In
a pointer diagram blocks of contiguous memory are drawn together, and pointers are drawn as
arrows between the blocks. Make your diagram as clear as possible.

¢ — [| D~ bpr b e

= NULL Ferminat?ra

\ Sf‘“ 7[n¢ 2.,/,/9/

Hee Sfructine

[T] (17
JN /SN e
verfoes -

vertex 1 vertex 2 vertex 3

c¢) How much space does it take to store the graph you just drew (including G, the pointer to the
graph)? Show your work.

2’(’” _(:o/ et caM/lt/ﬁffan //wu/ c,w/*
L/E/y (/a;c)

j/ (y ‘ﬁﬂ{- COW‘P wn '(h J‘&‘/[//)

\Caf a ((6(04/\47/1{; ,(A s UM M2L75

Login: cs6lc-

d) Given print_vertex(vertex_t *v), fill in the blanks in this function:

For example, an output for a graph with three edges could be:
(a,b)
(b,c)
(c.a)

void print_graph(edge_t **graph) {

while (*ma/w | &) {
printf("("); vt
print_vertex((‘quap h>—9 ’ﬁf&/);

. — VL
printf(",");
print_vertex(C*qrqﬂA» —) 5e or G/);
printf(")\n"); e
qlagh ¥+
} |
}

pA (4/; q[;r Fo?nfcr c\ncn:’mm{'
7/ F}s 1La'l‘ 2% caﬂe/l(f’lb’”/ Stafemen+

3 (,1"5 Lo ?r{m\" d"/d (M)
) - L c(ywm/“ loﬂin” e

(

(tm/h‘\;; ‘éf lelm veip e;&fn l/m(q///J

Login: cs61c-

6. SIMD String

Below is some MIPS from lecture for string copying. $s1 holds the address of string we are
copying, and $s2 holds the address we are copying to. We'll define a new kind of string to allow
faster copying through SIMD. Our new kind of string is much like the regular C strings except:
e The string starts on a word-aligned address; in other words, the last two bits of its 32 bit
address are 0s.
e The string ends with a word-aligned 32 bit null value.

Using the idea of SIMD, change at most four instructions to make a faster C string copy. To
modify an instruction fill in the replacement instruction in the blank on the same line as the
original instruction. Do not fill in a blank if you do not wish to modify its corresponding
instruction.

Loop: .
b$2,08s1) #$2=*p L $12, 0(3s)) o~ L
sb $2,0($s2) #*q = $12 sw $e1, 008 sv) o s L

addi $s1,$s1,1 #p=p+1 odd dsl 814
addi $s2,$s2,1 #q=q+1 [\'Ajf &57/$37/L‘{’

beq $t2,%$zero,Exit # if *p == 0, go to Exit

j Loop # go to Loop

Lot o e

-] \ R
‘ COYYGC‘{' '@O{mq,q “ { ,T(elj Mot +l\ﬂﬂ «STm]o[y (ﬁ'f‘/’“j Login: CS61C-__
Erom a sheet, Understgading of the Lovenale must e fomonstrated

7. How Fast

Suppose you are running code on a machine with a two level data cache. It also has an
instruction cache, which always hits, so we disregard it for our calculations.

e L1%$ has alocal hit rate of 50%, and hits in 1 cycle.

e L2$ has a local hit rate of 95%, and hits in 10 cycles.

e Main memory has a hit rate of 100%, and hits in 100 cycles.

Now, consider the following M!PS function:

jal foo #begin function call

foo:
addiu $sp, $sp, -8
sw $s0, 0($sp)
sw $s1, 4($sp)
Iw $s0, 0($a0)
Iw $s1, 0($al)
sw $s1, 0($a0)
sw $s0, 0($al)
Iw $s0, 0($sp)
Iw $s1, 4($sp)
addiu $sp, $sp, 8
jr $ra #end function call

\ \QX a. Briefly describe what foo does.

Swop$ o wilaes ponred o by Ja0) dal. Does nat swap Sqojﬁmi.

) ot 2 (;drfftch' Calculate the AMAT for the architecture provided (Reminder: we are ignoring instruction
P C \qloads for our calculations). - 8 o
ot AMAT = 14 0.5(10+.05 (100))= 8.5 Cycles
= Cortye .
PV\&m\u%m\ golyr\hation

\pC -Correct (M\Sweﬁum*tﬁ
c. Assuming that the program’s CPI would be 1 in the absence of cache misses, calculate the
CPI of a call to foo (note that the function call includes the jal).

CfT= \ ¢ (?ﬂ(d\q (Jo + .05 (100))= & cycles /instruction
295 - Corveck Lovmag

Lpt -~ Correct -subert uhion
\\ﬁ — anfwey m\J \Av\f’\")

Login: cs61c-
3 ors por meorrtt e

mk‘.\m\l-“‘ OX' 0/8
d. The following function is supposed to do the same thing as foo, but doesn’t. Without adding
any instructions , repair footoo so that it does. To modify an instruction fill in the replacement
instruction in the blank on the same line as the original instruction. Do not fill in a blank if you do
not wish to modify its corresponding instruction.

jal footoo #begin function call

footoo: .
Iw $50,0($20) lw $+o._0(q 0)
Iw $51,0(3a1) o dw gh_0(al)
sw $s1,0($a0) Sw \H’\) d ($a0)
sw $s0,0(Sal) sw $to, oClyl)
jr $ra #end function call

e. Assuming that a program spends 20% of it's time making calls to foo, what is the speedup of
switching to footoo?

The votto of “esketo loods and Sfores To ofher in S’rmham
TS constant woving Lvom fos to (loojfooj, S0 CPI%o;CPI’

feo"’(?().
S we can apply Andahls Lo O(’W(/.I\/

f
I X -
S Qe/d\l =) - - -)9
f f (l-—o\1)+o\27: 1 |

\ \(A’ - Co'ﬁecj(%m«\q
\\o\’ ~Coftth namerice) Substittion
\ ?‘t - Coftect omswiy

10

Login: cs6l1c-

8. Ackermann

The Ackermann function A is defined as follows:

n+1 ftm=0
A(m,n) =< A(m—1,1) ifm>0andn=0
A(m—1,A(m,n~1)) ifm>0andn>0.

Fill in the following C function so that it computes A(m, n).

unsigned int A(unsigned int m, unsigned int n) {

if (m==0) {
return A=) :
} else if (nN==20) {
retwa A(n\~l/ 0 ;
} else { .
cefuen A (m-l) A(M’(\»-l)\ ;
} L Polnr oo lne - R
} (ommon pighhes v mbs ok rehrnwse = msteadd of == we At

o %t -MUerMnt ppeaber e lse whaore
Now you're going to translate that C into an equivalent MIPS function. We've built a skeleton
once again, but you're going to have to fill in the blanks to flesh it out. :
A
o) addiu $sp, $sp, —IL & neor +|L

sw $s0, 0($sp)

sw $s1, 4($sp)

sw $ra, 8($sp)

addu $s0, $a0, $0
addu $s1, $al, $0
beq $s0, $0, L1

b) beq 351 g0, 12
or da\
#continued on next page#

11

Login: cs6lc-

addu $a0, $s0, $0 #does nothing, included for clarity
addiu $a1, $s1, -1

jal A
) addu_bal, $vo, $0 | poink fr bie £ ar) (mut gt
d) addiu_$a° , $s0,-1 C opwts for ¢, d qahet (7F conped 1)
jal A
| Exit

L1:
e,£) addugvo, §s5\ | |

j Exit oc Jal

L2:
addiu $a0, $s0 ,-1
addiu $a1,%$0, 1
jal A
j Exit

Exit:

3) w $s0, O ($sp)
WY wssi, M ($sp)
D wsra, B ($sp)

)> addiu $sp, $sp, | T
jr $ra

12

