Physics 137A: Second Midterm
Closed Book and Closed Notes: 50 Minutes

1) (20 pts) Review problem: A particle of mass m is confined in the half-infinite, half-finite

00 x <0
square well of depth of Vo = |Vo| and width a: V(z) =¢ —Vo 0<z<a
0 a<zx

V=-Vo

x=0 X=2a

a) (4 pts) Assuming a bound state (E <0), write down appropriate wave functions for the in-
terior (0 < z < a) and exterior (a < z) regions, taking into account the behavior of the wave
function at x = 0 and at x = co. Please denote the wave number for the region 0 < x < a
and a < z by k and k&, respectively, defining these wave numbers in terms of £, m, h, and Vo.

Since the wave function must vanish at the origin and at infinity, the only possibilities are

Asin kx, O0<z<a
¢(z) = { Be™r* T >a

where k = /—2mE/h and k = /2m(E + V;)/h.



b) (4 pts) By matching the interior and exterior wave functions and their derivatives at the
boundary x = a, determine the wave function up to one overall normalization constant and
determine the eigenvalue condition.

Asin (ka) = Bexp (—ka) — B = Asin(ka)exp (ka)
Ak cos (ka) = —Brexp (—ka) = —Arsin (ka) — —kcot (ka) =k

so the wave function :
b(z) = Asin kz, O<zr<a
T ] Asinka ele®) T >a

¢) (4 pts) By solving the eigenvalue equation for the case where there is only one bound state
— which you should place at zero binding energy — determine the condition on the potential
parameters (Vo and a) that will guarantee that at least one bound state exists.

V2
k—0 k—/2mVy/h so Cot(a;ﬂ/o)zo

a
= \/2mVy—- = 5 for exactly one zero — energy bound state

h

2+2

T
so = a*Vy > S for bound states to exist

m

d) (4 pts) What is the relationship of this problem to the fully finite well problem of depth
Vo and width 2a, centered on the origin (no calculations necessary here)?

The solutions of this problem are equivalent to the odd solutions of the square well
problem: the eigenvalues are the same, and if the solution is merely extended as an odd
function to negative —x, the wave functions would be the same.

e) (no calculations needed here, either) (4 pts) If we had kept the infinite potential for = < 0,
but used the potential V(z) = smw?z? for > 0, what would be the resulting spectrum of
allowed eigenvalues FE,,?

As in 4d), the solutions would satisfy the harmonic oscillator potential Hamiltonian for
x > 0 and would vanish at x = 0. Thus the solutions would correspond to the odd solutions
of the harmonic oscillator problem. The spectrum of all solutions is E,, = hw(n+1/2). This
the odd solutions would have the spectrum E, = hw(n + 1/2), n=1,3,5,... or equivalently
E, = hw(2n+3/2), n=0,1,2,...



2. a) (4 pts) A and B are Hermitian operators. Express (AB)! in terms of A and B (that is,
AT and BT should not appear in your final answer).

(AB)' = BTAT =B A (1)

b) (6 pts) Determine whether the following operator combinations are Hermitian, again
assuming A and B are Hermitian. (Please show a proof in each case.)

A A

AB+BA: (AB+BA) =BfAT + ATlBf =B A+ A B=A B+ B A = Hermitian

A A

AB—BA: (AB—BA) = BIAT —ATBf =B A - A B=—(AB—B A) = not Hermitian

i(AB=BA) : (iAB —iBA)t = —iBTAt +jAIBl = —(B A — A B) = i(A B— B A) = Hermitian

¢) (5 pts) Show that if pAand Q have a common, complete set of eigenvectors {f;}, so that
PA‘pr,qJ = Pilfpia) and Q| fpq.) = @il fpi ) for all [fi) = [fp.q,) in the Hilbert space, then
[P,Q] = 0.

Let |fi) = |fp..q:) represent any eigenvector in the complete Hilbert space. Then
PQ|fP17Qi> = Pqi|fpi7‘h'> = qu|fpini> = Qipi|fpi,qz'> (2)

Similarly, o R A
QP|fpias) = Qpil fpigi) = PiQl fpiai) = Pittil fpiai) (3)
Subtracting = [P, Q]| fy.q.) = 0| f»,q.) for all states in the Hilbert space = [P, Q] = 0.



3. Consider a two-level system with basis states |1) = ( (1) ) and |2) = ( (1) ) The

Hamiltonian matrix in this basis is H = < 2, gj ); alternatively, H = E(|1)(2] + [2)(1]).

a) (5 pts) Find the eigenvalues of H and the corresponding stationary states.

The eigenvalue equation is A> — E? = 0 = A\ = £ F. The eigenvectors |s1) can be expanded
in the same basis with coefficients to be determined, |s+) = a4 |1) + b1 |2).

Hisy) = E(1) + [2) (1) (ax]1) + b:[2)) = E(by[1) + as|2)) = Elsy) = E(ay[1) +b,[2))
His_) = B(|1)(2 + [2) (L) (a_|1) +b_[2)) = B(b_|1) +a_|2)) = —Els_) = —E(a_[1) +b_[2))

Thus we find the normalized eigenvectors (stationary states)

1 1 1 1
$p)=—7|1)+—7=|2 s_)=—7=|1) — —=|2 4
[5+) = 51 \/ﬁH |s-) \/5|> \/§H (4)
b) (5 pts) Suppose at time ¢ = 0 the system is prepared in the state |S(t = 0)) = |1). Find
|S(t)), the solution of the time-dependent Schroedinger equation. Express the result as

1S()) = [)A[S@)) + [2)(2[S(2))
That is, determine (1]S(¢)) and (2|S(t)) as simple functions of ¢, F, and h.

From above it is immediate that [S(0)) >=[1) = |s;) + %]&}. Consequently, plugging
in the stationary state time dependence,
1S(t)) > =

>€—iEt/h >ez‘Et/h

1 1
E'SJF + ﬁ|3—
= )+ 12 P (1) — [2)e = cos (O] —isin (5|2

c¢) (5 pts) Using the above result, calculate the probabilities P;(t) and P»(t) that a mea-
surement will find that the system |S(¢)) in state |1) and state |2), respectively. Hint: check
that your calculation satisfies Pi(t) + Pa(t) = 1.

Et Et

Pi(t) = [(1[S(0))]* = cos” (1) Po(t) = 12[S(0))[* = sin® ()



4. a) (5 pts) A nuclear excited state with a most probable energy E decays with a lifetime
Tm ~ At = 1071 s. What constraint does the energy uncertainty principle place on AE?
(Give the answer in eV, using I = 6.58 x 10716 eV s.)

h 6.58 x 10716 Vs
AEAt > — AE > =0.32
Zf_2=> > 57 % 10155 0.329 eV

2
b) (5 pts) Apply the generalized uncertainty principle, 0%0% > ( ([A B])) , to the operators
A=jiand B=H = p?/2m+V to determine o,0. (Hint: your answer should involve (p).)

: n: d n o d? n o, d? > B d ik
b H) = 2(— 4 V(@) = (e 4 V(@))z = (o —
& H] = omd? (@) = omde? (@) 2m(dx2x da:2) m dx mp
1, -\ (h .\
() - (o
» o202 (1)) = (1))
0201 2 5—|(P)|
¢) (5pts) Return to 3b). Using the operator @ = |1)(1] and the expression
d 0Q

S = Q) + (50

where the expectation value is taken with respect to the state |S(t)), derive an expression
for dPy(t)/dt. Is it consistent with what you would calculate directly from your answer in
3c)?
d d dP(t)
1)(1]S(t 1|S(¢
ZSOMAISE) = 2SO = —

FSOILANSO) = + ((S@HEILISE) - (SE11H]SE)

1

_ };E (SHI2)(11S (1)) — (SE)1)(2[S 1))
Consequently,

df;; ) _ Zf (22 sm(Eht) cos (if)) = —2hE sin (Ef_f) cos <Eht) = —gsin <2hEt) (5)

We have used H = E(|1)(2| + |2)(1]) in the above. Indeed, this is the same answer we get
by taking the derivative of the answer in 3c).




