Math 54, Spring 2011, F.Rezakhanlou

Each question should be answered directly. Use the back of these sheets if necessary. Justify your assertions; include detailed explanation, and show your work. No aid (including calculators) are allowed.

Your Name:

Your GSI's Name:

Your Section:

• 1. (22 points) Let

$$A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ a & 1 & 1 & 3 \\ 0 & 2 & 1 & 0 \end{bmatrix}.$$

Find the null space and column space of A when a=3. For what \mathbf{b} , the equation $A\mathbf{x}=\mathbf{b}$ has a solution for \mathbf{x} ?

• 2. (20 points) Let A be as in Problem 1. Show that A is invertible when a=1 and find its inverse.

• 3. (18 points) Let A be as in Problem 1 and assume that $a \neq 3$. If $A\mathbf{x} = \mathbf{b}$ with

$$\mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix},$$

use Cramer's rule to find x_2 .

• 4. (True - False) (20 points)

For each of the questions below, indicate if the statement is **true** or **false**. If true, **justify** (give a brief explanation or quote a relevant theorem from the course), and if false, give a counter-example or explain.

- (a) If A is a square matrix such that A^2 is the zero matrix, then A is the zero matrix.
- (b) If A is a square matrix, then $det(AA^T) \geq 0$.
- (c) If A is a matrix of size $m \times n$ and there exists a matrix B of size $n \times m$ such that AB = I, then $A\mathbf{x} = \mathbf{b}$ can be solved for \mathbf{x} for every \mathbf{b} in \mathbb{R}^m .
- (d) The set of polynomials $p(t) = a_0 + a_1t + a_2t^2$ such that $a_1 = a_2^2$ is a subspace.

(e) Suppose that A is a matrix and $A\mathbf{x}_1 = \mathbf{b}_1$, $A\mathbf{x}_2 = \mathbf{b}_2$, $A\mathbf{x}_3 = \mathbf{b}_3$. If \mathbf{b}_1 , \mathbf{b}_2 and \mathbf{b}_3 are linearly independent, then \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 are linearly independent.