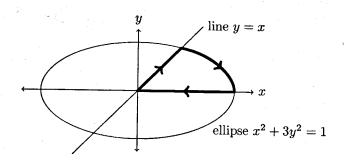
- 1. (14 points) Compute the line integral $\int_C y \, dx$ for these curves C:
 - (a) $C: x(t) = \cos t, y(t) = \frac{1}{\sqrt{3}} \sin t, 0 \le t \le 2\pi.$
 - (b) C is the ellipse $x^2 + 3y^2 = 1$ with clockwise orientation.
 - (c) C is the bolded curve drawn below:



2. (12 points) Let C be a curve in the plane that goes from (0,0) to $(\frac{\pi}{2},\pi)$. Is the line integral

$$\int_C \cos x \cos y \, \mathrm{d}x + \sin x \sin y \, \mathrm{d}y$$

path independent? If it is, compute it. Now answer the same question for

$$\int_C \cos x \cos y \, \mathrm{d}x - \sin x \sin y \, \mathrm{d}y$$

3. (12 points) C is square with vertices (0,0), (1,0), (1,1), and (0,1) with counterclockwise orientation. For differentiable P(x,y), show that

$$\int_C P \, \mathrm{d}x = -\int_0^1 \int_0^1 P_y(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

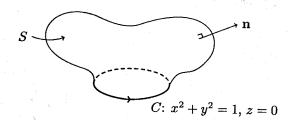
4. (12 points) For the same C as in problem 3, evaluate the line integral

$$\int_C (5 - xy - y^2) \, \mathrm{d}x + (x^2 - 2xy) \, \mathrm{d}y.$$

- 5. (12 points)
 - (a) Compute the upward unit normal of the surface z = xy.
 - (b) Compute the area A of this surface inside the cylinder $x^2 + y^2 = R^2$, where R is a positive constant. What is $\lim_{R \to 0} \frac{A}{\pi R^2}$?
- 6. (12 points) S is the portion of z = xy inside the cylinder $x^2 + y^2 = 1$. Compute

$$\iint_S (y\mathbf{i} + x\mathbf{j} + \mathbf{k}) \cdot \mathbf{n} \, \mathrm{d}S$$

- 7. (12 points) Compute the surface integral of the vector field $\mathbf{F} = x\mathbf{i} + y\mathbf{j}$ over the hemisphere $x^2 + y^2 + z^2 = 1$, z > 0. (Hint: First, consider the *closed* surface made of the hemisphere and the disk $x^2 + y^2 \le 1$ in the xy-plane).
- 8. (14 points) The vector field \mathbf{F} is the curl of another vector field \mathbf{B} , $\nabla \times \mathbf{B} = \mathbf{F}$.
 - (a) Compute $\nabla \cdot \mathbf{F}$.
 - (b) Let S be a surface with its perimeter C the unit circle in the xy-plane, like this:



Take $\mathbf{B} = -y\mathbf{i} + x\mathbf{j}$. Compute $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$, with \mathbf{n} oriented as shown.