
ME 109 Exam 2 Solutions 

 

Put a box around your answer  
 (If you refer to an eq. or fig. in the text or notes give the page number) 

(30) 1. A pure aluminum sphere, 10 cm (.1 m) in diameter, is initially at 320 K. The 

sphere is suddenly exposed to air at 300K and at the same time a uniform volumetric heat 

source (1000 W/m
3
) is suddenly activated. Write the governing unsteady energy equation 

that applies and is needed for the determination of the temperature of the sphere.  

Do NOT solve but provide all the necessary quantities that would be needed to solve for 

the temperature (or refer to the equation you would use to evaluate these quantities). 

Repeat: Do NOT solve. 

 

 Important properties of air (Tf º300 K): 
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 Important property of aluminum (T º300 K): 
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 This is a lumped capacitance problem.  Lumped capacitance is a scenario in 

which the energy entering or leaving a body is considered to be rate limited by 

convection at the surface.  That is, the resistance associated with conduction to the 

surface is much less than the resistance associated with convection to the environment 

and thus the body’s temperature deviates minimally and, further can be approximated as a 

constant over the body.  

 In this problem the convection is caused by free convection because buoyancy-

driven forces are driving the convection.  There are two non-dimensional groups that 

relate buoyant forces to viscous forces, the Grashof number, GrD and the Rayleigh 

number, RaD.  Here the subscript ‘D’ is used as the characteristic length for cylinders and 



spheres, whereas ‘L’ would be used for a plane wall.  Depending on the correlation, the 

Nusselt correlation may be dependent on either number.  For this particular correlation, 

the Rayleigh number is required.  RaD is found as the product of GrD and Pr: 
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but note that this value contains the surface temperature which varies with time, Ts(t) so 

)(tRaD .  Free convection for spheres is given by equation (9.35) on page 583: 
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( )tNuD  can then be converted into an average heat transfer coefficient, )(th  as follows 
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In order to proceed we must first check that the Biot number (Bi) meets the criterion for 

applying a lumped capacitance analysis, equation (5.10) on page 261: 
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since h  will decrease as Ts approaches T∞, )0( =th  is used to find the largest Bi(t).  The 

lumped capacitance criterion is met and lumped capacitance can be assumed.   

 Since the temperature is assumed to be constant throughout the entire body, the 

total stored energy, ( )tEst  in the system can be thought of as a function of only time, t: 
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The energy balance within the control volume then contains three terms:  the time-rate of 

energy stored, stE
& (t), the energy generated, genE&  and free convection, )(tqconv .  The 

energy rate balance at the control volume is shown in the figure below: 

 

 

 



 

 
 

The terms in the energy balance can be rewritten as: 

 

( )

( )∞−=

=

=

TtTthrtq

qrE

dt

dT
crtE

conv

gengen

pst

)()(4)(

)(

)(

2

3

3

4

3

3

4

π

π

πρ

&&

&

 

Expanding the energy balance gives (DIFFERENTIAL EQUATION): 
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with the following initial condition (NECESSARY IC): 

KtT 320)0( ==   

genE& , 

stE
&  

convq

 

Energy rate balance: 

accumulation = in – out 

)()( tqEtE convgenst −= &&  

Control  

Volume 



ME 109 Exam 2 Solutions 

 

Do NOT solve by the finite difference method. 

(40) 2. Consider a pure aluminum plate that extends from x = 0 to x = L = 1 m. The initial 

temperature is 300 K. At time t = 0 the surface at x = L is changed and kept at 330 K 

while the surface at x = 0 insulated. 

 

What is the temperature at x = 0 at the times  

a)  t = 80 seconds 

b)  t = 8000 seconds 

Repeat Do NOT solve by the finite difference method. 

 

 

SOLUTION 

 

 Relevant material properties: 
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 Other important parameters: 
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 Important calculations: 
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 Note that in both cases the Biot number (Bi) goes to ∞ or Bi
-1

 = 0 (value important 

in figure).  This is because the boundary condition at x = L = 1 m (x
*
=1) is 
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This is a convection boundary condition but what we want is a dirichlet or temperature-

setting boundary condition (T(x=L,t) = 330 K).  The way to proceed is to let T∞ = 330 K; 

but we then need T(x=L,t) = T∞.  To ensure that this condition is met, the resulting surface 

heat transfer condition can then be thought of in two separate ways.  (1) The convective 

resistance must be so small that there is negligible temperature drop between T(x=L,t) and 

T∞ (analogous to no resistance in a series circuit causes no voltage drop), Rconv ~ 1/h = 0, 

h�∞, Bi�∞.  (2) It can be assumed that the surface flux is finite, q ~ h*(T(x=L,t) - T∞) 

in order to force T(x=L,t) = T∞ (or T(x=L,t) - T∞ = 0)  then h�∞, Bi�∞. 

 

Useful figure (figure 5S.1):  

 

 
 

There are two possible solution techniques exist:  (1) using textbook supplements 

5.S1 or (2) using the textbook analysis conducted in pages 271-274.   

•  

Fo = 0.0078,  

x
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•
 

Fo = 0.7770, 

x
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Option (1): 

 See figure above.  Following from the calculations of Fo and Bi, the value of θ*
 

can be found from extrapolation of the figure (t=80 s, θ*
º1; t=8000 s, θ*

º0.18).  As a 

result of the definition for θ*
 above, the temperature T(x

*
,t

*
) can be found from: 
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Then the temperatures are T(x=0,t=80 s) º 300 K and T(x=0,t=8000 s) º 325 K. 

 

Option (2): 

 The textbook (page 273) states that a one term approximation of equation (5.39a) 

can be made for Fo > 0.2.  However, the t = 80 s (Fo = 0.0078) doesn’t meet this 

requirement.  Thus more terms are required to approximate θ0
*
(t = 80 s).  Then multiple 

terms must be used to evaluate textbook equation (5.39a)  
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The book gives the first eigenvalue (ζ1) on page 274 and the first four terms in Appendix 

B.3 (page 962).  These values are solutions to textbook equation (5.39c):  
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Knowing that nζ must be finite, leads us to the equation 

  ∞=nζtan  

for which the eigenvalues can be expressed as 
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Equation (5.39b) can then be used to find the coefficients, Cn: 

  
( )

( )nn

n
nC

ζζ

ζ

2sin2

sin4

+
=  

The table below shows the values of ζi, Ci, θi and θ*.   

 

 



i ζi Ci θi θ* = Σθi 

1 1.5708 1.2732 1.2490 1.2490 

2 4.7124 -0.4244 -0.3569 0.8921 

3 7.8540 0.2546 0.1574 1.0494 

4 10.9956 -0.1819 -0.0708 0.9786 

5 14.1372 0.1415 0.0298 1.0084 

6 17.2788 -0.1157 -0.0113 0.9971 

7 20.4204 0.0979 0.0038 1.0009 

8 23.5619 -0.0849 -0.0011 0.9998 

9 26.7035 0.0749 0.0003 1.0001 

10 29.8451 -0.0670 -0.0001 1.0000 

 

The following figure plots the convergence of these terms: 
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From the plot above the value of θ0
*
(t = 80 s) converges to 1.  So T(x=0,t=80 s) º 300 K.   

For T(x
*
=0,t=8000 s or Fo = 0.78), the condition (Fo > 0.2) is met to apply the 

one term approximation in equation (5.41) which considers the temperature as the 

midplane (x
*
=0) 

 

  ( )FoC 2

11

*

0 exp ζθ −=  

using the values in Table 5.1 on page 274 gives 
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Then from the definition of θ *
, T(x=0,t=8000 s) º 324.4 K. 



ME 109 Exam 2 Solutions 

 

(40) 3. Consider boundary layer flow past a constant temperature flat plate that is aligned 

with the flow.  At a location 8 km ( = 8000 m) from the leading edge the heat transfer 

coefficient, h,  is measured and we designate the value as B (w/m
2
K). 

 

 The free stream velocity is 20 m/s. The gas is a mixture of gases (say of nitrogen, oxygen 

and carbon monoxide). What is the value of the heat transfer coefficient at the location 12 

km from the leading edge. 

 
 

This problem requires the relationship, hx(x).  This is a scaling problem.  Several 

approaches could be used, two are explained below:  use of the thermal boundary layer 

(physical approach) and use of a Nusselt relationship (correlation approach). 

Begin by determining flow regime from Reynolds number with a flow velocity of 

20 m/s, a position of 8000 m and a kinematic viscosity of ~10
-5 
m
2
/s (at 300 K): 
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This flow is turbulent (Rex > 4*10
5
). 

 

Using a thermal boundary layer (adapted from notes 9.14 with turbulent boundary 

layer growth), the surface heat flux, sq ′′  is described as: 
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where δT is the thermal boundary layer thickness which can be related to the 

hydrodynamic boundary layer thickness, δ as: 
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Turbulent hydrodynamic boundary layers grow as: 
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The overall scaling of the surface heat flux to position, x is: 

  5/1~ −′′ xqs  

Now relate the heat flux to the local heat transfer coefficient hx: 

  ( ) xsxs hTThq ~∞−=′′  

The relationship between the local heat transfer coefficient and position is: 

  5/1~ −xhx  

Finally using scaling, determine the hx=12000m as: 
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Using a Nusselt relationship, find the equation for local, constant surface temperature 

turbulent flow Nusselt number, Nux.  This is equation (7.36) on page 411: 

  3/15/4 PrRe0296.0 xxNu =  

where Reynolds number is the only variable to show an x dependence: 
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Then, from the correlation, relate Nux to its x-dependence: 

  5/45/4 ~Re~ xNu xx  

Recall the definition of Nux: 
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Equating the two previous Nux positional dependences gives: 

  5/15/4 ~~~ −⇒ xhxhNux xxx  

Finally using scaling, determine the hx=12000m as: 

  BBh
hh

const
x

h
m

mmx 92.0
8000

12000

120008000

5/1

120005/1

12000

5/1

8000

5/1
≈







=⇒=⇒=
−

−−−
 


	ME 109 Exam 2 Problem 1 Solution
	ME 109 Exam 2 Problem 2 Solution
	ME 109 Exam 2 Problem 3 Solution

