Problem 1. The impact between the block A and pan B must be treated separately; the solution is therefore divided into three parts.
Part 1. Let v_{A} be the velocity with which the block A hits the pan B. From the conservation of energy,

$$
\begin{aligned}
& \Delta T+\Delta V_{g}=0 \\
\Rightarrow \quad & m_{A} g h=\frac{1}{2} m_{A} v_{A}^{2} \\
\Rightarrow \quad & v_{A}=6.26 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Part 2. For the impact between block A and pan B, linear momentum is conserved. Let v be the common velocity of the block and pan after impact. Then

$$
\begin{array}{ll}
& m_{A} v_{A}+m_{B} v_{B}=\left(m_{A}+m_{B}\right) v \\
\Rightarrow \quad & 30(6.26)=(30+10) v \\
\Rightarrow \quad & v=4.70 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Part 3. Denote by x the maximum deflection of the pan, measured from its static equilibrium position. Initially the spring supports the weight of the pan, thus the spring has a static compression of $\delta=m_{B} g / k=4.91 \times 10^{-3} \mathrm{~m}$. When the pan reaches the position of maximum deflection, the spring has a total compression of $x+\delta$. From the conservation of energy,

$$
\begin{aligned}
& \Delta T+\Delta V_{g}+\Delta V_{e}=0 \\
\Rightarrow \quad & \frac{1}{2}\left(m_{A}+m_{B}\right) v^{2}+\frac{1}{2} k \delta^{2}=-\left(m_{A}+m_{B}\right) g x+\frac{1}{2} k(x+\delta)^{2} \\
\Rightarrow \quad & k x^{2}+2(k \delta-392) x-884=0 \\
\Rightarrow \quad & x=0.225 \text { or }-0.196
\end{aligned}
$$

Thus the maximum deflection of the pan is $x=0.225 \mathrm{~m}$
Problem 2.

Let G be the center of mass of the system. Upon application of the horizontal force F, G will move with an acceleration a_{G} in the direction of F. From the generalized equation of motion,

$$
\begin{aligned}
& \sum F_{x}=m a_{G} \\
\Rightarrow \quad & 12=\left(\frac{4+2}{32.2}\right) a_{G}
\end{aligned}
$$

$$
\Rightarrow \quad a_{G}=64.4 \mathrm{ft} / \mathrm{sec}^{2}
$$

In order to determine the angular momentum of the system about G, it is necessary to find its position. Let G be located at a distance d from the 2-lb ball along the rigid rod. By moment balance,

$$
\begin{aligned}
& 4(10-d)=2 d \\
\Rightarrow \quad & d=\frac{20}{3}=6.67 \mathrm{in}
\end{aligned}
$$

Let the angular position of the rigid rod be specified by an angle θ measured from any convenient fixed direction. Each ball moves in a circle relative to G. For the entire system,

$$
\begin{aligned}
H_{G} & =\sum \rho_{i}\left(m_{i} \dot{\rho}_{i}\right)=\sum m_{i} \rho_{i}^{2} \dot{\theta} \\
& =\frac{4}{32.2}\left(\frac{3.33}{12}\right)^{2} \dot{\theta}+\frac{2}{32.2}\left(\frac{6.67}{12}\right)^{2} \dot{\theta}=0.0288 \dot{\theta} \mathrm{lb}-\mathrm{ft}-\mathrm{sec}
\end{aligned}
$$

With respect to the mass center G,

$$
\begin{aligned}
& \sum M_{G}=\dot{H}_{G} \\
\Rightarrow \quad & 12\left(\frac{6+3.33}{12}\right)=0.0288 \ddot{\theta} \\
\Rightarrow \quad & \ddot{\theta}=325 \mathrm{rad} / \mathrm{sec}^{2}
\end{aligned}
$$

y

Problem 3.
(a) $\mathbf{V}_{\mathbf{a}}=0.5 \mathbf{i} \mathrm{~m} / \mathrm{s}$. Because the engine rests on the driver axles, the engine must share the same velocity as the center of the axles: point A on the driver.
(b)

$$
\begin{aligned}
& \vec{V}_{S}=\vec{V}_{A}+\vec{w}_{d r} \times \vec{r}_{S / A}= 0.5 \mathrm{~L} \mathrm{~m}_{\mathrm{s}}+(-2.2 \vec{k} \mathrm{~km} \mathrm{~J}) \times(-0.95 \mathrm{j} \mathrm{~m}) \\
& \vec{V}_{S}=-1.59 亡 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

This velocity proves that the driver is slipping on the rail. Otherwise $\mathbf{V}_{\mathbf{s}}$ would be equal to zero.
(c)

$$
\begin{aligned}
& \vec{\nabla}_{p}=0.5 \stackrel{\rightharpoonup}{\imath} \frac{\mathrm{~s}}{\mathrm{~s}}+\left(-2.2 k \frac{\mathrm{rad}}{\mathrm{~s}}\right) \times(.2 \stackrel{\rightharpoonup}{\imath}-.346 \vec{j}) \mathrm{m} \\
& \vec{V}_{p}=(-.261 \stackrel{\rightharpoonup}{\imath}-.44 \vec{\jmath}) \frac{m}{s}
\end{aligned}
$$

$$
\begin{aligned}
& V_{H} \vec{\imath}=(-.261 \vec{\imath}-.44 \vec{\jmath}) \frac{m}{s}+\dot{\theta}_{m r} \vec{k} \times(3.18 \vec{\imath}+.346 \vec{\jmath}) m \\
& \text { j component: } O=-.44 \frac{\mathrm{~m}}{\mathrm{~s}}+(3.18 \mathrm{~m})\left(\dot{\theta}_{m n}\right) \\
& \dot{\theta}_{m r}=.138 \frac{\mathrm{rad}}{\mathrm{~s}}
\end{aligned}
$$

i component: $V_{H}=-.261 \frac{\mathrm{~m}}{\mathrm{~s}}-(.346 \mathrm{~m}) \dot{\theta}_{\mathrm{mm}}$
(d)

$$
\vec{V}_{H}=-.309 \stackrel{\mathrm{c}}{\mathrm{~s}}
$$

(e) The angular velocity of the Side Rod is always zero because the drivers all rotate at the same speed and the Side Rod only translates and does not rotate.

