
CS 61A Structure and Interpretation of Computer Programs

Fall 2011 Midterm Exam 1 Solutions
INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except a one-page crib sheet of your
own creation and the official 61A Midterm 1 Study Guide.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation. All short answer sections can be successfully answered in a few sentences at most.

Last Name

First Name

SID

Login

TA & Section Time

Name of the person
to your left

Name of the person
to your right

All the work on this
exam is my own.
(please sign)

For staff use only

Q. 1 Q. 2 Q. 3 Q. 4 Total

/10 /16 /14 /10 /50

2

THIS PAGE INTENTIONALLY LEFT BLANK

Login: 3

1. (10 points) Call Expressions

Assume that you have started Python 3 and executed the following statements:

from operator import add, mul

def square(x):

return mul(x, x)

def curry(f):

def g(x):

return lambda y: f(x, y)

return g

For each of the following call expressions, write the value to which it evaluates in the current environment
(which may differ from what is printed). If evaluating the call expression causes an error, write “error” and
the reason for the error.

(a) (2 pt) add(4, square(print(2)))

Error: print(2) evaluates to None. Cannot multiply None and None in the body of square.

(b) (2 pt) add(4, square(square(2)))

20

(c) (2 pt) print(4, square(square(2)))

None

(d) (2 pt) curry(add)(square(2))(4)

8

(e) (2 pt) add(curry(square)(2), 4)

Error: Cannot add a function and an int.

4

2. (16 points) Defining Functions

(a) (5 pt) A function streak returns the greatest number of 1’s returned consecutively in n calls to coin.
Its second argument coin is a random, non-pure function that returns 1 sometimes and 0 other times.

For instance, streak would return 3, if 10 calls to coin returned these 10 values, in order:

0, 1, 1, 0, 1, 1, 1, 0, 0, 1

Your partner hands you the following implementation of streak moments before this question is due. You
don’t have time to rewrite it; you can only indent lines, dedent (un-indent) lines, and delete things. Mark
changes to the code below so that it correctly implements streak, using the following symbols:

• Place a right arrow (→) before a line to indent it by an additional 4 spaces.

• Place a left arrow (←) before a line to dedent it by 4 spaces.

• Circle a part of the code to delete it.

6

4

2. (16 points) Defining Functions

(a) (5 pt) A function streak returns the greatest number of 1’s returned consecutively in n calls to coin.
Its second argument coin is a random, non-pure function that returns 1 sometimes and 0 other times.

For instance, streak would return 3, if 10 calls to coin returned these 10 values, in order:

0, 1, 1, 0, 1, 1, 1, 0, 0, 1

Your partner hands you the following implementation of streak moments before this question is due. You
don’t have time to rewrite it; you can only indent lines, dedent (un-indent) lines, and delete things. Mark
changes to the code below so that it correctly implements streak, using the following symbols:

• Place a right arrow (→) before a line to indent it by an additional 4 spaces.

• Place a left arrow (←) before a line to dedent it by 4 spaces.

• Circle a part of the code to delete it.

def streak(n, coin):

"""Return the greatest number of 1’s returned consecutively

in n calls to coin.

coin -- A function that takes zero arguments and returns 0 or 1.

n -- A positive integer

"""

n, k = 0, 0, 1

total = 0 # consecutive 1’s since a 0

greatest = 0 # The greatest number of consecutive 1’s

while k <= n and coin() == 1:

if coin == 0 or coin(n) == 0 or coin() == 0:

greatest, total = max(greatest, total), total, 0

else:

total = total + 1

k = k + 1

n = n + 1

return max(greatest, total)

This circle
is optional

Login: 5

(b) (5 pt) In Newton’s method, the function iter improve may cycle between two different guesses. For
instance, consider finding the zero of f(x) = x3 − 2x + 2 (graphed below) using exact derivatives. A
starting guess of 1 updates to 0, which updates to 1 again. The cyclic pattern 1, 0, 1 is called a length-two
cycle, because it contains only two distinct elements before repeating.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-0.8

0.8

1.6

2.4

3.2

4

Write a new version of iter improve that returns False as soon as a length-two cycle of guesses occurs,
but otherwise behaves the same as the implementation from class (and printed on your study guide).

def iter_improve(update, done, guess=1, max_updates=1000):

k = 0

previous_guess = None

while not done(guess) and k < max_updates:

next_guess = update(guess)

if previous_guess == next_guess:

return False

previous_guess, guess = guess, next_guess

k = k + 1

return guess

6

(c) (4 pt) The figure below depicts an example piecewise function, f(x) =

{
x2 x < 1

3− x x ≥ 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

1

2

3

Define a Python function called piecewise that takes three arguments: two functions lower func and
upper func, and a number cutoff. lower func and upper func each take a single number argument and
return a single number value.

piecewise returns a new function that takes a single number argument x and returns lower func(x) if
x is less than cutoff, or upper func(x) if x is greater than or equal to cutoff. For example:

>>> f = piecewise(lambda x: x*x, lambda x: 3-x, 1)

>>> f(0.5)

0.25

>>> f(5)

-2

def piecewise(lower_func, upper_func, cutoff):

def f(x):

if x < cutoff:

return lower_func(x)

else:

return upper_func(x)

return f

(d) (2 pt) Assume that you have started Python 3 and executed the following statement:

def self_apply(f):

return f(f)

Write an expression in the blank operand position below, so that this call to self apply evaluates to 5:

self_apply(lambda f: 5)

Login: 7

3. (14 points) Environments

(a) (6 pt) Fill in this environment diagram and expression tree that result from executing the Python code
in the lower right of the page. A complete answer will:

• Complete all missing arrows.

• Add all local frames created by applying user-defined functions.

• Add all missing names and values.

• Add all missing statements, expressions, and return values in the expression tree.Turtles Solution

5

from operator import mul

def mutant(y):
 y, x = y+1, y+2
 return ninja(y)/2

def ninja(x):
 return x + 2

def turtle(x):
 return mul(x, y) + 2

y, ninja = 5, turtle

mutant(y)

mutant(y)

y, x = y+1, y+2
return ninja(y)/2

ninja(y)

mutant(y):
y, x = y+1, y+2
return ninja(y)/2

ninja(x):

return x + 2

turtle(x)

return mul(x, y) + 2mutant

y: 6

x: 7

mutant:
ninja:

turtle:
y: 5

return mul(x, y) + 2

turtle

x: 6

32

16

8

(b) (6 pt) Fill in this diagram of environments and values that result from executing the Python code in the
box below. You do not need to draw an expression tree. A complete answer will:

• Complete all missing arrows.

• Add all local frames created by applying user-defined functions.

• Add all missing names and values.

Chuck Solution

4

x = 10
def walker(x):
 def texas(ranger):
 return x + 3
 return texas

def ranger(n):
 return x + walker(n)(n)

texas = ranger
ranger(2)

ranger(n):

return x + walker(n)(n)

walker(x):

def texas(ranger):
 return x + 3
return texas

walker:

ranger:

texas:

x: 10

ranger

n: 2

walker

x: 2

texas:

texas(ranger):

return x + 3

texas

ranger: 2

(c) (2 pt) What is the value of the nested expression texas(ranger(2)), evaluated in the current environment
that results from executing the code in the previous problem? If evaluating this expression causes an error,
write “error” and the reason for the error.

28

Login: 9

4. (10 points) Data Abstraction

An amount is a collection of nickels (5 cents) and pennies (1 cent), with the following behavior condition:

If an amount a is constructed with n nickels and p pennies, then 5 · nickels(a) + pennies(a) = 5 · n + p.

Consider the following implementation of an abstract data type for amounts.

def make_amount(n, p):

return (n, p)

def nickels(a):

return a[0]

def pennies(a):

return a[1]

(a) (2 pt) Circle all abstraction barrier violations for this abstract data type in the following implementation
of add amounts, if there are any.

Amount Solution

7

Login: 9

4. (10 points) Data Abstraction

An amount is a collection of nickels (5 cents) and pennies (1 cent), with the following behavior condition:

If an amount a is constructed with n nickels and p pennies, then 5 · nickels(a) + pennies(a) = 5 · n + p.

Consider the following implementation of an abstract data type for amounts.

def make_amount(n, p):

return (n, p)

def nickels(a):

return a[0]

def pennies(a):

return a[1]

(a) (2 pt) Circle all abstraction barrier violations for this abstract data type in the following implementation
of add amounts, if there are any.

def add_amounts(a1, a2):

n1 = nickels(a1)

n2 = nickels(a2)

n = n1 + n2

p = a1[1] + a2[1]

return (n, p)

(b) (4 pt) An amount is minimal if it has no more than 4 pennies. Redefine the constructor so that all
amounts are minimal, but the behavior condition of the type still holds.

def make_amount(n, p):

(b) (4 pt) An amount is minimal if it has no more than 4 pennies. Redefine the constructor so that all
amounts are minimal, but the behavior condition of the type still holds.

def make_amount(n, p):

return (n + p // 5, p % 5)

10

(c) (4 pt) Suppose we redefine make amount functionally, as follows:

def make_amount(n, p):

def dispatch(message):

if message == 0:

return n

elif message == 1:

return p

return dispatch

Redefine the selectors to implement a valid abstract data type for amounts using this constructor, in which
all amounts are minimal. That is, pennies should never return a number greater than 4.

def nickels(a):

return a(0) + a(1) // 5

def pennies(a):

return a(1) % 5

