UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences EE42/100 Fall 2011

Prof. Subramanian

Test 2

FOR ALL QUESTIONS, ASSUME OP-AMPS ARE IDEAL UNLESS OTHERWISE STATED

1) Consider the circuit below.

a) Derive an equation for the output voltage as a function of the input current.

- b) Suppose R2 was replaced by a short circuit, would your answer above change? Give reasons as appropriate.
- c) Now, suppose the input of the op-amp is no longer ideal, and in fact, there is an input resistance R_{in} between the non-inverting and inverting inputs. Derive an equation for V_{out} as a function of I_{in} in this case.

d) R_{in} is typically not a well-controlled parameter in operation amplifiers. What value would you pick for R_2 above to ensure that variations in R_{in} do not significantly impact the circuit performance? Give reasons as appropriate.

2) Consider the circuit below.

a) Derive equations for V_{out}

b) Suppose a load resistor R_L is connected from the output to ground. Derive an equation for I_{out} , i.e., the current through R_L .

- 3) Consider Operational Amplifiers as used in modern circuits
 - a) Why do we use high-gain op-amps and then use negative feedback to reduce the gain? Why not just use an op-amp with the desired gain?
 - b) Suppose I designed a voltage amplifier with a gain of 100, and used a V_{DD} and V_{SS} of +15V and -15V respectively. What is the maximum input signal sinusoid amplitude that could be used without clipping?
 - c) Why do clipped waveforms sound distorted to the human ear? Given a mathematical justification (no need to write any equations; just explain the concept).
 - d) For the amplifier in part (b), what is the gain in dB?
- 4) For the following circuit, derive V_{out} / V_{in} as a function of "a". "R" is a fixed value of resistance.

