
Math 104 - Midterm 1 Solutions
Lecture 4, Fall 2011

1. (10 points) Give an example of each of the following. You do not need to give any justification.
(a) A nonempty, bounded subset of R\Q with no infimum in R\Q.
(b) A subspace of R containing Z in which {−4} is open but {3} is not.
(c) A nonempty subspace of R\Q which is complete in the metric space sense.
(d) An uncountable open subset of (−1, 1) ∩ (R\Q) which is not all of (−1, 1) ∩ (R\Q).
(e) A bounded sequence in {x ∈ R\Q | − π < x < π} which is not Cauchy in R.

Solution. Here are some possible examples. Also, the problem did not require justifications but I’ll
give some anyway.

(a) The set (−2, 2) ∩ R\Q of irrational numbers between −2 and 2 works. This is certainly
bounded since it sits inside of the bounded interval (−2, 2). Also, as a subset of R its infimum is
−2, which is not irrational. Hence the given set has no infimum in R\Q.

(b) The set S = Z ∪
(
5
2 ,

7
2

)
works. This certainly contains Z. Also, {−4} is open in S since the

ball of radius 1
4 in S around −4 only contains −4, so this ball is contained in {−4}. (The point is

that there are no other elements of S in this ball.) However, {3} is not open in S since any ball in
S around 3 will contain elements of S which are not in {3}.

(c) The sets
√

2N = {
√

2n | n ∈ N} and
√

2Z = {
√

2m | m ∈ Z} work. In both of these, the
only Cauchy sequences are ones which are eventually constant since the distance between distinct
points of these can never be smaller than 1. Actually, by a similar reasoning, any nonempty finite
subset of Q will also be such an example.

(d) The set {x ∈ R\Q | 0 < x < 1} of positive irrational numbers works less than 1 works.
Indeed, this is uncountable and for any such x the ball of radius min{|x|, 1− |x|} in R\Q consists
only of positive irrational numbers less than 1, so this ball is contained in the above set.

(e) The sequence (−1)n
√

2 works. The terms of this sequence are all in the given set, which is
itself bounded, and this sequence does not converge since it has a subsequence converging to −

√
2

and another converging to
√

2. Since it does not converge in R, it is not Cauchy in R.

2. (15 points) For each n ∈ N, let fn : [0, 1]→ R denote the function defined by

fn(x) :=


1

3
xn if x ∈ R\Q

0 otherwise.

Compute the distance between 10fn and fn in Cb([0, 1]) with respect to the sup metric and prove
that your answer is correct. (Careful: note that fn(1) = 0 and not 1 for all n.)

Solution. The distance we want is

sup
x∈[0,1]

|10fn(x)− fn(x)| = sup
x∈[0,1]

9|fn(x)|.

For rational x, fn(x) = 0 so such x cannot possibly give the supremum we want. So, the above
supremum comes from considering irrational x:

sup
x∈[0,1]

9|fn(x)| = sup
x∈[0,1]∩(R\Q)

3|x|n.

As x gets closer to 1, 3|x|n gets closer to 3 so we claim that the supremum is indeed 3.



First, since xn ≤ 1 for any 0 ≤ x ≤ 1, we see that 3 is an upper bound of {3|x|n | x ∈
(R\Q)∩ [0, 1]}. Now, let ε > 0 and ε ≤ 3. By the denseness of R\Q in R, there exists an irrational
number x such that

n

√
3− ε

3
< x < 1.

Note that the condition ε ≤ 3 is required in order to guarantee that the n-th root above is defined.
Then

3− ε
3

< xn < 1, so 3− ε < 3xn < 3.

Thus we have found an element of {3|x|n | x ∈ (R\Q)∩ [0, 1]} which is larger than 3− ε. For ε > 3,
any element of this set will be larger than 3 − ε since in this case 3 − ε < 0. Thus 3 satisfies the
ε-characterization of supremums, so we conclude that d(10fn, fn) = 3 for any n as claimed.

3. (15 points) Suppose that (xn) is a sequence of real numbers and that a, b ∈ R with a 6= 0.
(a) If (xn) converges to x and axn +b ≥ 0 for all n, show that (

√
axn + b) converges to

√
ax+ b.

(b) Give an example, with brief justification, where (x4n) converges but (xn) does not.
(c) If (x2n) converges to 0, show that (xn) converges to 0.

In (a) you must use only the definition of convergence and no other limit theorems.

Solution. (a) First note that the condition axn + b ≥ 0 is only there to ensure that the square roots
we use all make sense. Let ε > 0. Since (xn)→ x, we can pick an index N such that

|xn − x| <
ε2√
|a|

for n ≥ N.

Using the fact that
√
α−
√
β ≤
√
α− β whenever α ≥ β, we have

|
√
axn + b−

√
ax+ b| ≤

√
|(axn + b)− (ax+ b)|,

so for n ≥ N we have

|
√
axn + b−

√
ax+ b| ≤

√
|axn − ax| =

√
|a|
√
|xn − x| <

√
ε2 = ε.

Thus (
√
axn + b)→

√
ax+ b as claimed.

(b) The sequence xn = (−1)n works. Indeed, we have x4n = 1 is a constant sequence so it
converges, but (xn) does not converge since the subsequence of even-indexed terms converges to 1
while the subsequence of odd-indexed terms converges to −1.

(c) Let ε > 0 and pick N such that

|xn|2 = |x2n − 0| < ε2 for n ≥ N.

Taking square roots we have
|xn − 0| = |xn| < ε for n ≥ N,

showing that (xn) converges to 0.

4. (10 points) Suppose that (X, d) is a metric space and let {x1, . . . , xn} be a finite set of points
of X. Show, using only the definition of open, that the set X\{x1, . . . , xn} obtained by removing
each xi from X is open in X. (Draw a picture to get some intuition!)



Proof. Let p ∈ X\{x1, . . . , xn} and set

r = min{d(x1, p), . . . , d(xn, p)}.

Since p 6= xi for all i, each of the distances above is positive so their minimum r is also positive. If
q ∈ Br(p), we have

d(q, xi) ≥ d(xi, p)− d(q, p) > d(xi, p)− r ≥ 0 for all i = 1, . . . , n,

so q 6= xi for any i. Thus Br(p) ⊆ X\{x1, . . . , xn} and X\{x1, . . . , xn} is open in X as claimed.

5. (0 points) Draw a picture of your favorite closed subset of R2.


