Math 104 - Midterm 1 Solutions Lecture 4, Fall 2011

- 1. (10 points) Give an example of each of the following. You do not need to give any justification.
 - (a) A nonempty, bounded subset of $\mathbb{R}\setminus\mathbb{Q}$ with no infimum in $\mathbb{R}\setminus\mathbb{Q}$.
 - (b) A subspace of \mathbb{R} containing \mathbb{Z} in which $\{-4\}$ is open but $\{3\}$ is not.
 - (c) A nonempty subspace of $\mathbb{R}\setminus\mathbb{Q}$ which is complete in the metric space sense.
 - (d) An uncountable open subset of $(-1,1) \cap (\mathbb{R} \setminus \mathbb{Q})$ which is not all of $(-1,1) \cap (\mathbb{R} \setminus \mathbb{Q})$.
 - (e) A bounded sequence in $\{x \in \mathbb{R} \setminus \mathbb{Q} \mid -\pi < x < \pi\}$ which is not Cauchy in \mathbb{R} .

Solution. Here are some possible examples. Also, the problem did not require justifications but I'll give some anyway.

- (a) The set $(-2,2) \cap \mathbb{R} \setminus \mathbb{Q}$ of irrational numbers between -2 and 2 works. This is certainly bounded since it sits inside of the bounded interval (-2,2). Also, as a subset of \mathbb{R} its infimum is -2, which is not irrational. Hence the given set has no infimum in $\mathbb{R} \setminus \mathbb{Q}$.
- (b) The set $S = \mathbb{Z} \cup \left(\frac{5}{2}, \frac{7}{2}\right)$ works. This certainly contains \mathbb{Z} . Also, $\{-4\}$ is open in S since the ball of radius $\frac{1}{4}$ in S around -4 only contains -4, so this ball is contained in $\{-4\}$. (The point is that there are no other elements of S in this ball.) However, $\{3\}$ is not open in S since any ball in S around 3 will contain elements of S which are not in $\{3\}$.
- (c) The sets $\sqrt{2}\mathbb{N} = \{\sqrt{2}n \mid n \in \mathbb{N}\}$ and $\sqrt{2}\mathbb{Z} = \{\sqrt{2}m \mid m \in \mathbb{Z}\}$ work. In both of these, the only Cauchy sequences are ones which are eventually constant since the distance between distinct points of these can never be smaller than 1. Actually, by a similar reasoning, any nonempty finite subset of \mathbb{Q} will also be such an example.
- (d) The set $\{x \in \mathbb{R} \setminus \mathbb{Q} \mid 0 < x < 1\}$ of positive irrational numbers works less than 1 works. Indeed, this is uncountable and for any such x the ball of radius $\min\{|x|, 1 |x|\}$ in $\mathbb{R} \setminus \mathbb{Q}$ consists only of positive irrational numbers less than 1, so this ball is contained in the above set.
- (e) The sequence $(-1)^n\sqrt{2}$ works. The terms of this sequence are all in the given set, which is itself bounded, and this sequence does not converge since it has a subsequence converging to $-\sqrt{2}$ and another converging to $\sqrt{2}$. Since it does not converge in \mathbb{R} , it is not Cauchy in \mathbb{R} .
- **2.** (15 points) For each $n \in \mathbb{N}$, let $f_n : [0,1] \to \mathbb{R}$ denote the function defined by

$$f_n(x) := \begin{cases} \frac{1}{3}x^n & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \\ 0 & \text{otherwise.} \end{cases}$$

Compute the distance between $10f_n$ and f_n in $C_b([0,1])$ with respect to the sup metric and prove that your answer is correct. (Careful: note that $f_n(1) = 0$ and not 1 for all n.)

Solution. The distance we want is

$$\sup_{x \in [0,1]} |10f_n(x) - f_n(x)| = \sup_{x \in [0,1]} 9|f_n(x)|.$$

For rational x, $f_n(x) = 0$ so such x cannot possibly give the supremum we want. So, the above supremum comes from considering irrational x:

$$\sup_{x \in [0,1]} 9|f_n(x)| = \sup_{x \in [0,1] \cap (\mathbb{R} \setminus \mathbb{Q})} 3|x|^n.$$

As x gets closer to 1, $3|x|^n$ gets closer to 3 so we claim that the supremum is indeed 3.

First, since $x^n \leq 1$ for any $0 \leq x \leq 1$, we see that 3 is an upper bound of $\{3|x|^n \mid x \in (\mathbb{R}\setminus\mathbb{Q})\cap[0,1]\}$. Now, let $\epsilon>0$ and $\epsilon\leq 3$. By the denseness of $\mathbb{R}\setminus\mathbb{Q}$ in \mathbb{R} , there exists an irrational number x such that

$$\sqrt[n]{\frac{3-\epsilon}{3}} < x < 1.$$

Note that the condition $\epsilon \leq 3$ is required in order to guarantee that the *n*-th root above is defined. Then

$$\frac{3-\epsilon}{3} < x^n < 1$$
, so $3-\epsilon < 3x^n < 3$.

Thus we have found an element of $\{3|x|^n \mid x \in (\mathbb{R}\setminus\mathbb{Q}) \cap [0,1]\}$ which is larger than $3-\epsilon$. For $\epsilon > 3$, any element of this set will be larger than $3-\epsilon$ since in this case $3-\epsilon < 0$. Thus 3 satisfies the ϵ -characterization of supremums, so we conclude that $d(10f_n, f_n) = 3$ for any n as claimed.

- **3.** (15 points) Suppose that (x_n) is a sequence of real numbers and that $a, b \in \mathbb{R}$ with $a \neq 0$.
 - (a) If (x_n) converges to x and $ax_n + b \ge 0$ for all n, show that $(\sqrt{ax_n + b})$ converges to $\sqrt{ax + b}$.
 - (b) Give an example, with brief justification, where (x_n^4) converges but (x_n) does not.
 - (c) If (x_n^2) converges to 0, show that (x_n) converges to 0.

In (a) you must use only the definition of convergence and no other limit theorems.

Solution. (a) First note that the condition $ax_n + b \ge 0$ is only there to ensure that the square roots we use all make sense. Let $\epsilon > 0$. Since $(x_n) \to x$, we can pick an index N such that

$$|x_n - x| < \frac{\epsilon^2}{\sqrt{|a|}} \text{ for } n \ge N.$$

Using the fact that $\sqrt{\alpha} - \sqrt{\beta} \le \sqrt{\alpha - \beta}$ whenever $\alpha \ge \beta$, we have

$$|\sqrt{ax_n + b} - \sqrt{ax + b}| \le \sqrt{|(ax_n + b) - (ax + b)|},$$

so for $n \geq N$ we have

$$|\sqrt{ax_n+b}-\sqrt{ax+b}| < \sqrt{|ax_n-ax|} = \sqrt{|a|}\sqrt{|x_n-x|} < \sqrt{\epsilon^2} = \epsilon.$$

Thus $(\sqrt{ax_n+b}) \to \sqrt{ax+b}$ as claimed.

- (b) The sequence $x_n = (-1)^n$ works. Indeed, we have $x_n^4 = 1$ is a constant sequence so it converges, but (x_n) does not converge since the subsequence of even-indexed terms converges to 1 while the subsequence of odd-indexed terms converges to -1.
 - (c) Let $\epsilon > 0$ and pick N such that

$$|x_n|^2 = |x_n^2 - 0| < \epsilon^2 \text{ for } n \ge N.$$

Taking square roots we have

$$|x_n - 0| = |x_n| < \epsilon \text{ for } n \ge N,$$

showing that (x_n) converges to 0.

4. (10 points) Suppose that (X, d) is a metric space and let $\{x_1, \ldots, x_n\}$ be a finite set of points of X. Show, using only the definition of open, that the set $X \setminus \{x_1, \ldots, x_n\}$ obtained by removing each x_i from X is open in X. (Draw a picture to get some intuition!)

Proof. Let $p \in X \setminus \{x_1, \dots, x_n\}$ and set

$$r = \min\{d(x_1, p), \dots, d(x_n, p)\}.$$

Since $p \neq x_i$ for all i, each of the distances above is positive so their minimum r is also positive. If $q \in B_r(p)$, we have

$$d(q, x_i) \ge d(x_i, p) - d(q, p) > d(x_i, p) - r \ge 0 \text{ for all } i = 1, \dots, n,$$

so $q \neq x_i$ for any i. Thus $B_r(p) \subseteq X \setminus \{x_1, \dots, x_n\}$ and $X \setminus \{x_1, \dots, x_n\}$ is open in X as claimed. \square

5. (0 points) Draw a picture of your favorite closed subset of \mathbb{R}^2 .