Question #1

A vessel of volume V_0 is perfectly insulated from the environment, and contains a partition locked into place that divides the volume in half. On the left side of the partition is 1 mole of ideal gas at a temperature T_0 and pressure P_0 . On the right side of the partition there is vacuum.

- Part A: The partition is released, and the gas is allowed to expand. Is this process for reversible or irreversible, and why? Work hit of box DEPCWSIBK, but in Cop during CEPTING
- Part B: Calculate the work done by the gas during the expansion, and the final temperature of the system after the expansion is complete.

W= $\int -\rho_{ab} dV = -\int 0 = 0$ $W^{2}0$ Q=0 AU = QTW=0 = CuNT (T=10)

Chemical Engineering 141, Midterm 1, Spring 2010

Part C: What is the change in entropy of the system for this process?

Too themal express
$$PV = nRT$$

 $dS = \frac{dS^0}{T} + \frac{R}{T} dV = nR \frac{dV}{T}$
 $\int dS = nR \ln(\frac{V_{5}V_{6}}{V_{6}}) = R\ln(\frac{V_{5}V_{6}}{V_{6}}) = R\ln(2)$
 $AS = R\ln(2)$

. ...

$$\frac{du}{du} = \frac{dw}{du} = \frac{du}{du} = \frac{w}{du}$$

$$\frac{\int_{1}^{2} \int_{1}^{2} \int_{1}$$

Chemical Eng

Part E: What would be the entropy change if I returned the gas to its initial state, $(V_o/2,T_o,P_o)$?

$$O = R \ln(2) + O + AS_3$$

 $AS_3 = -R \ln 2$

Chemical Engineering 141, Midterm 1, Spring 2010

4

Question #2

It can be shown that the internal energy per mole of a van der Waals fluid is:

$$u = \frac{3}{2}RT - a\rho$$

where R is the gas constant, T is temperature, and ϱ is the molar density.

Part A: For a given volume, mole number, and temperature, which system will have a lower internal energy, an ideal gas or a van der Waals fluid? Why?

Part B: Calculate the constant volume heat capacity of a van der Waals fluid, and compare it to the constant volume heat capacity of an ideal gas.

$$(J = (M) (NT) (J = $\frac{3}{2} RT - \alpha n$
(J = $\frac{3}{2} R$
(-sme as idal 945)
(J = $\frac{3}{2} RT - \alpha n$
V$$

Chemical Engineering 141, Midterm 1, Spring 2010

Chemical Engineering 141, Midterm 1, Spring 2010